Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 342968, 11 pages
http://dx.doi.org/10.1155/2012/342968
Review Article

Journey of Mesenchymal Stem Cells for Homing: Strategies to Enhance Efficacy and Safety of Stem Cell Therapy

Stem Cell Research Center, RNL BIO, Gasan-Dong, Geumcheon-Gu, Seoul 153-768, Republic of Korea

Received 3 February 2012; Revised 6 April 2012; Accepted 17 April 2012

Academic Editor: Reinhard Henschler

Copyright © 2012 Sung Keun Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Nauta and W. E. Fibbe, “Immunomodulatory properties of mesenchymal stromal cells,” Blood, vol. 110, no. 10, pp. 3499–3506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Ankrum and J. M. Karp, “Mesenchymal stem cell therapy: two steps forward, one step back,” Trends in Molecular Medicine, vol. 16, no. 5, pp. 203–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Parekkadan and J. M. Milwid, “Mesenchymal stem cells as therapeutics,” Annual Review of Biomedical Engineering, vol. 12, pp. 87–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. L. Si, Y. L. Zhao, H. J. Hao, X. B. Fu, and W. D. Han, “MSCs: biological characteristics, clinical applications and their outstanding concerns,” Ageing Research Reviews, vol. 10, no. 1, pp. 93–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Ben-Ami, S. Berrih-Aknin, and A. Miller, “Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases,” Autoimmunity Reviews, vol. 10, no. 7, pp. 410–415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. B. S. Dhinsa and A. B. Adesida, “Current clinical therapies for cartilage repair, their limitation and the role of stem cells,” Current Stem Cell Research and Therapy, vol. 7, no. 2, pp. 143–148, 2012. View at Publisher · View at Google Scholar
  8. D. G. Phinney and D. J. Prockop, “Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views,” Stem Cells, vol. 25, no. 11, pp. 2896–2902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. Bergman, D. Gazit, A. J. Kahn, H. Gruber, S. Mcdougall, and T. J. Hahn, “Age-related changes in osteogenic stem cells in mice,” Journal of Bone and Mineral Research, vol. 11, no. 5, pp. 568–577, 1996. View at Google Scholar · View at Scopus
  10. H. T. Chen, M. J. Lee, C. H. Chen et al., “Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures,” Journal of Cellular and Molecular Medicine, vol. 16, no. 3, pp. 582–593, 2012. View at Publisher · View at Google Scholar
  11. A. Stolzing, H. Colley, and A. Scutt, “Effect of age and diabetes on the response of mesenchymal progenitor cells to fibrin matrices,” International Journal of Biomaterials, vol. 2011, Article ID 378034, 9 pages, 2011. View at Publisher · View at Google Scholar
  12. B. A. Huibregtse, B. Johnstone, V. M. Goldberg, and A. I. Caplan, “Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells,” Journal of Orthopaedic Research, vol. 18, no. 1, pp. 18–24, 2000. View at Google Scholar
  13. M. Lavasani, A. R. Robinson, A. Lu et al., “Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model,” Nature Communications, vol. 3, article 608, 2012. View at Publisher · View at Google Scholar
  14. S. C. Mendes, J. M. Tibbe, M. Veenhof et al., “Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age,” Tissue Engineering, vol. 8, no. 6, pp. 911–920, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Jing and Y. Jian-xiong, “3-D spheroid culture of bone marrow mesenchymal stem cell of rhesus monkey with improved multi-differentiation potential to epithelial progenitors and neuron in vitro,” Clinical and Experimental Ophthalmology, vol. 39, pp. 808–819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Birmingham, G. L. Niebur, P. E. Mchugh, G. Shaw, F. P. Barry, and L. M. McNamara, “Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche,” European Cells and Materials, vol. 23, pp. 13–27, 2012. View at Google Scholar
  17. E. J. Sheehy, C. T. Buckley, and D. J. Kelly, “Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells,” Biochemical and Biophysical Research Communications, vol. 417, no. 1, pp. 305–310, 2012. View at Publisher · View at Google Scholar
  18. A. Mirsaidi, K. N. Kleinhans, M. Rimann et al., “Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice,” Journal of Tissue Engineering and Regenerative Medicine, vol. 6, no. 5, pp. 378–390, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Wagner, P. Horn, M. Castoldi et al., “Replicative senescence of mesenchymal stem cells: a continuous and organized process,” PLoS ONE, vol. 3, no. 5, Article ID e2213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Rando, “Stem cells, ageing and the quest for immortality,” Nature, vol. 441, no. 7097, pp. 1080–1086, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Chapel, J. M. Bertho, M. Bensidhoum et al., “Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome,” Journal of Gene Medicine, vol. 5, no. 12, pp. 1028–1038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature, vol. 453, no. 7193, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Chavakis, C. Urbich, and S. Dimmeler, “Homing and engraftment of progenitor cells: a prerequisite for cell therapy,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 4, pp. 514–522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Karp and G. S. Leng Teo, “Mesenchymal stem cell homing: the devil is in the details,” Cell Stem Cell, vol. 4, no. 3, pp. 206–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Li, Q. Huang, J. Chen et al., “Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration,” Science Signaling, vol. 3, no. 110, p. ra13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. da Silva Meirelles, A. I. Caplan, and N. B. Nardi, “In search of the in vivo identity of mesenchymal stem cells,” Stem Cells, vol. 26, no. 9, pp. 2287–2299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968. View at Google Scholar · View at Scopus
  28. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Chen, R. Liu, Y. Yang et al., “The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons,” Neuroscience Letters, vol. 505, no. 2, pp. 171–175, 2011. View at Publisher · View at Google Scholar
  30. N. Ahmadi, S. Razavi, M. Kazemi, and S. Oryan, “Stability of neural differentiation in human adipose derived stem cells by two induction protocols,” Tissue and Cell, vol. 44, no. 2, pp. 87–94, 2012. View at Publisher · View at Google Scholar
  31. S. Jang, H. H. Cho, Y. B. Cho, J. S. Park, and H. S. Jeong, “Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin,” BMC Cell Biology, vol. 11, article 25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Du, D. S. Roh, M. L. Funderburgh et al., “Adipose-derived stem cells differentiate to keratocytes in vitro,” Molecular Vision, vol. 16, pp. 2680–2689, 2010. View at Google Scholar · View at Scopus
  33. G. Jin, M. P. Prabhakaran, and S. Ramakrishna, “Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering,” Acta Biomaterialia, vol. 7, no. 8, pp. 3113–3122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Ayatollahi, M. Soleimani, S. Z. Tabei, and M. K. Salmani, “Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-I,” World Journal of Stem Cells, vol. 3, pp. 113–121, 2011. View at Google Scholar
  35. F. Al Battah, J. De Kock, T. Vanhaecke, and V. Rogiers, “Current status of human adipose-derived stem cells: differentiation into hepatocyte-like cells,” The Scientific World Journal, vol. 11, pp. 1568–1581, 2011. View at Publisher · View at Google Scholar
  36. D. R. Bhandari, K. W. Seo, B. Sun et al., “The simplest method for in vitroβ-cell production from human adult stem cells,” Differentiation, vol. 82, pp. 144–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. C. K. Rebelatto, A. M. Aguiar, M. P. Moretao et al., “Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue,” Experimental Biology and Medicine, vol. 233, no. 7, pp. 901–913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Alviano, V. Fossati, C. Marchionni et al., “Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro,” BMC Developmental Biology, vol. 7, article 11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Kassem, M. Kristiansen, and B. M. Abdallah, “Mesenchymal stem cells: cell biology and potential use in therapy,” Basic and Clinical Pharmacology and Toxicology, vol. 95, no. 5, pp. 209–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Abla, J. Friedman, and J. Doyle, “Performing bone marrow aspiration and biopsy in children: recommended guidelines,” Paediatrics and Child Health, vol. 13, no. 6, pp. 499–501, 2008. View at Google Scholar · View at Scopus
  42. S. Gronthos, A. C. Zannettino, S. J. Hay et al., “Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow,” Journal of Cell Science, vol. 116, no. 9, pp. 1827–1835, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Ohgushi, N. Kotobuki, H. Funaoka et al., “Tissue engineered ceramic artificial joint-ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis,” Biomaterials, vol. 26, no. 22, pp. 4654–4661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Mizuno, “Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review,” Journal of Nippon Medical School, vol. 76, no. 2, pp. 56–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Sen, Y. R. Lea-Currie, D. Sujkowska et al., “Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous,” Journal of Cellular Biochemistry, vol. 81, no. 2, pp. 312–319, 2001. View at Publisher · View at Google Scholar
  48. O. Hayashi, Y. Katsube, M. Hirose, H. Ohgushi, and H. Ito, “Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue,” Calcified Tissue International, vol. 82, no. 3, pp. 238–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. M. Devine, C. Cobbs, M. Jennings, A. Bartholomew, and R. Hoffman, “Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates,” Blood, vol. 101, no. 8, pp. 2999–3001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Kawada, J. Fujita, K. Kinjo et al., “Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction,” Blood, vol. 104, no. 12, pp. 3581–3587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Nagaya, T. Fujii, T. Iwase et al., “Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis,” American Journal of Physiology, vol. 287, no. 6, pp. H2670–H2676, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Deak, E. Seifried, and R. Henschler, “Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications,” International Reviews of Immunology, vol. 29, no. 5, pp. 514–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Horita, O. Honmou, K. Harada, K. Houkin, H. Hamada, and J. D. Kocsis, “Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat,” Journal of Neuroscience Research, vol. 84, no. 7, pp. 1495–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Omori, O. Honmou, K. Harada, J. Suzuki, K. Houkin, and J. D. Kocsis, “Optimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats,” Brain Research, vol. 1236, pp. 30–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. I. M. Barbash, P. Chouraqui, J. Baron et al., “Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution,” Circulation, vol. 108, no. 7, pp. 863–868, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Mahmood, D. Lu, C. Qu, A. Coussev, and M. Chopp, “Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats,” Neurosurgery, vol. 57, no. 5, pp. 1026–1031, 2005. View at Publisher · View at Google Scholar
  57. M. Fatar, M. Stroick, M. Griebe et al., “Lipoaspirate-derived adult mesenchymal stem cells improve functional outcome during intracerebral hemorrhage by proliferation of endogenous progenitor cells: stem cells in intracerebral hemorrhages,” Neuroscience Letters, vol. 443, no. 3, pp. 174–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. S. François, M. Bensidhoum, M. Mouiseddine et al., “Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage,” Stem Cells, vol. 24, no. 4, pp. 1020–1029, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. L. A. Ortiz, F. Gambelli, C. McBride et al., “Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8407–8411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Jiang, A. Ma, T. Wang et al., “Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study,” Pflugers Archiv European Journal of Physiology, vol. 453, no. 1, pp. 43–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Morigi, M. Introna, B. Imberti et al., “Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice,” Stem Cells, vol. 26, no. 8, pp. 2075–2082, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. K. Hsiao, M. F. Tai, H. H. Chu et al., “Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level,” Magnetic Resonance in Medicine, vol. 58, no. 4, pp. 717–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. S. Song and J. H. Ku, “Monitoring transplanted human mesenchymal stem cells in rat and rabbit bladders using molecular magnetic resonance imaging,” Neurourology and Urodynamics, vol. 26, no. 4, pp. 584–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. R. Reagan and D. L. Kaplan, “Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems,” Stem Cells, vol. 29, no. 6, pp. 920–927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. D. L. Kraitchman, M. Tatsumi, W. D. Gilson et al., “Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction,” Circulation, vol. 112, no. 10, pp. 1451–1461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. B. S. Shah, P. A. Clark, E. K. Moioli, M. A. Stroscio, and J. J. Mao, “Labeling of mesenchymal stem cells by bioconjugated quantum dots,” Nano Letters, vol. 7, no. 10, pp. 3071–3079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Yukawa, M. Watanabe, N. Kaji et al., “Monitoring transplanted adipose tissue-derived stem cells combined with heparin in the liver by fluorescence imaging using quantum dots,” Biomaterials, vol. 33, no. 7, pp. 2177–2186, 2012. View at Publisher · View at Google Scholar
  68. J. Gao, J. E. Dennis, R. F. Muzic, M. Lundberg, and A. I. Caplan, “The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion,” Cells Tissues Organs, vol. 169, no. 1, pp. 12–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. T. A. Springer, “Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm,” Cell, vol. 76, no. 2, pp. 301–314, 1994. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Saito, J. Kuang, B. Bittira, A. Al-Khaldi, and R. C. J. Chiu, “Xenotransplant cardiac chimera: immune tolerance of adult stem cells,” Annals of Thoracic Surgery, vol. 74, no. 1, pp. 19–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Mouiseddine, S. François, A. Semont et al., “Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model,” British Journal of Radiology, vol. 80, no. 1, pp. S49–S55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. K. S. Cho, H. K. Park, H. Y. Park et al., “IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model,” Stem Cells, vol. 27, no. 1, pp. 259–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Ries, V. Egea, M. Karow, H. Kolb, M. Jochum, and P. Neth, “MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines,” Blood, vol. 109, no. 9, pp. 4055–4063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Sordi, M. L. Malosio, F. Marchesi et al., “Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets,” Blood, vol. 106, no. 2, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. S. J. Baek, S. K. Kang, and J. C. Ra, “In vitro migration capacity of human adipose-derived mesenchymal stem cells and their expression of a distinct set of chemokine and growth factor receptors,” Experimental and Molecular Medicine, vol. 43, no. 10, pp. 596–603, 2011. View at Google Scholar
  77. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Tolar, K. Le Blanc, A. Keating, and B. R. Blazar, “Concise review: hitting the right spot with mesenchymal stromal cells,” Stem Cells, vol. 28, no. 8, pp. 1446–1455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. E. M. Horwitz, D. J. Prockop, L. A. Fitzpatrick et al., “Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta,” Nature Medicine, vol. 5, no. 3, pp. 309–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” The New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. R. H. Lee, M. J. Seo, R. L. Reger et al., “Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17438–17443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Kawada, J. Fujita, K. Kinjo et al., “Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction,” Blood, vol. 104, no. 12, pp. 3581–3587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. S. L. Chen, W. W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. R. S. Ripa, M. Haack-Sorensen, Y. Wang et al., “Bone marrow-derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial,” Circulation, vol. 116, no. 11, pp. I24–I30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Duijvestein, A. C. Vos, H. Roelofs et al., “Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study,” Gut, vol. 59, no. 12, pp. 1662–1669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Taupin, “OTI-010 Osiris therapeutics/JCR pharmaceuticals,” Current Opinion in Investigational Drugs, vol. 7, no. 5, pp. 473–481, 2006. View at Google Scholar · View at Scopus
  87. E. Zappia, S. Casazza, E. Pedemonte et al., “Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy,” Blood, vol. 106, no. 5, pp. 1755–1761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Augello, R. Tasso, S. M. Negrini, R. Cancedda, and G. Pennesi, “Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1175–1186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Ciavarella, M. Dominici, F. Dammacco, and F. Silvestris, “Mesenchymal stem cells: a new promise in anticancer therapy,” Stem Cells and Development, vol. 20, no. 1, pp. 1–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. B. Fang, Y. Song, L. Liao, Y. Zhang, and R. C. Zhao, “Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease,” Transplantation Proceedings, vol. 39, no. 10, pp. 3358–3362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. C. Ra, I. S. Shin, S. H. Kim et al., “Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans,” Stem Cells and Development, vol. 20, no. 8, pp. 1297–1308, 2011. View at Publisher · View at Google Scholar
  92. L. Cai, B. H. Johnstone, T. G. Cook et al., “IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function,” Stem Cells, vol. 27, no. 1, pp. 230–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Banas, T. Teratani, Y. Yamamoto et al., “IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury,” Stem Cells, vol. 26, no. 10, pp. 2705–2712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. X. Wei, Z. Du, L. Zhao et al., “IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats,” Stem Cells, vol. 27, no. 2, pp. 478–488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Bacou, R. B. el Andalousi, P. A. Daussin et al., “Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle,” Cell Transplantation, vol. 13, no. 2, pp. 103–111, 2004. View at Google Scholar · View at Scopus
  96. R. Yañez, M. L. Lamana, J. García-Castro, I. Colmenero, M. Ramírez, and J. A. Bueren, “Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease,” Stem Cells, vol. 24, no. 11, pp. 2582–2591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Zhou, J. Yuan, Y. Zhou et al., “Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis,” Clinical Immunology, vol. 141, no. 3, pp. 328–337, 2011. View at Publisher · View at Google Scholar
  98. E. W. Choi, I. S. Shin, H. W. Lee et al., “Transplantation of CTLA4Ig gene-transduced adipose tissue-derived mesenchymal stem cells reduces inflammatory immune response and improves Th1/Th2 balance in experimental autoimmune thyroiditis,” Journal of Gene Medicine, vol. 13, no. 1, pp. 3–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. J. C. Ra, S. K. Kang, I. S. Shin et al., “Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells,” Journal of Translational Medicine, vol. 9, no. 1, article 181, 2011. View at Publisher · View at Google Scholar
  100. G. J. Maestroni, E. Hertens, and P. Galli, “Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice,” Cellular and Molecular Life Sciences, vol. 55, no. 4, pp. 663–667, 1999. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Studeny, F. C. Marini, R. E. Champlin, C. Zompetta, I. J. Fidler, and M. Andreeff, “Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors,” Cancer Research, vol. 62, no. 13, pp. 3603–3608, 2002. View at Google Scholar · View at Scopus
  102. M. Studeny, F. C. Marini, J. L. Dembinski et al., “Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents,” Journal of the National Cancer Institute, vol. 96, no. 21, pp. 1593–1603, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Y. Khakoo, S. Pati, S. A. Anderson et al., “Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1235–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Hakkarainen, M. Särkioja, P. Lehenkari et al., “Human mesenchymal stem cells lack tumor tropism but enhance the antitumor activity of oncolytic adenoviruses in orthotopic lung and breast tumors,” Human Gene Therapy, vol. 18, no. 7, pp. 627–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Kucerova, V. Altanerova, M. Matuskova, S. Tyciakova, and C. Altaner, “Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy,” Cancer Research, vol. 67, no. 13, pp. 6304–6313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Qiao, Z. Xu, T. Zhao et al., “Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model,” Cell Research, vol. 18, no. 4, pp. 500–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Cousin, E. Ravet, S. Poglio et al., “Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo,” PLoS ONE, vol. 4, no. 7, article e6278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. K. W. Seo, H. W. Lee, Y. I. Oh et al., “Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-β gene therapy and cisplatin in a mouse melanoma model,” Cytotherapy, vol. 13, no. 8, pp. 944–955, 2011. View at Publisher · View at Google Scholar
  109. J. Chen, Y. Li, L. Wang et al., “Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats,” Stroke, vol. 32, no. 4, pp. 1005–1011, 2001. View at Google Scholar · View at Scopus
  110. J. Wu, Z. Sun, H. S. Sun et al., “Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats,” Cell Transplantation, vol. 16, no. 10, pp. 993–1005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. W. J. C. Rombouts and R. E. Ploemacher, “Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture,” Leukemia, vol. 17, no. 1, pp. 160–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. R. F. Wynn, C. A. Hart, C. Corradi-Perini et al., “A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow,” Blood, vol. 104, no. 9, pp. 2643–2645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Ruster, S. Gottig, R. J. Ludwig et al., “Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells,” Blood, vol. 108, no. 12, pp. 3938–3944, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. R. Sackstein, J. S. Merzaban, D. W. Cain et al., “Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone,” Nature Medicine, vol. 14, no. 2, pp. 181–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Shi, J. Li, L. Liao et al., “Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice,” Haematologica, vol. 92, no. 7, pp. 897–904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. R. H. Lee, M. J. Seo, A. A. Pulin, C. A. Gregory, J. Ylostalo, and D. J. Prockop, “The CD34-like protein PODXL and {alpha}6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice,” Blood, vol. 113, no. 4, pp. 816–826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. A. De Becker, P. Van Hummelen, M. Bakkus et al., “Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3,” Haematologica, vol. 92, no. 4, pp. 440–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Liu, W. Xue, G. Ge et al., “Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs,” Biochemical and Biophysical Research Communications, vol. 401, no. 4, pp. 509–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. S. C. Hung, R. R. Pochampally, S. C. Hsu et al., “Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo,” PLoS One, vol. 2, no. 5, article e416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. I. Rosová, M. Dao, B. Capoccia, D. Link, and J. A. Nolta, “Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells,” Stem Cells, vol. 26, no. 8, pp. 2173–2182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. B. Annabi, Y. T. Lee, S. Turcotte et al., “Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation,” Stem Cells, vol. 21, no. 3, pp. 337–347, 2003. View at Google Scholar · View at Scopus
  122. S. Wislet-Gendebien, P. Leprince, G. Moonen, and B. Rogister, “Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells,” Journal of Cell Science, vol. 116, no. 16, pp. 3295–3302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Briquet, S. Dubois, S. Bekaert, M. Dolhet, Y. Beguin, and A. Gothot, “Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages,” Haematologica, vol. 95, no. 1, pp. 47–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. M. F. Ryser, F. Ugarte, S. Thieme, M. Bornhäuser, A. Roesen-Wolff, and S. Brenner, “mRNA transfection of CXCR4-GFP fusion—simply generated by PCR—results in efficient migration of primary human mesenchymal stem cells,” Tissue Engineering C, vol. 14, no. 3, pp. 179–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. Q. Xiao, S. K. Wang, H. Tian et al., “TNF-α increases bone marrow mesenchymal stem cell migration to ischemic tissues,” Cell Biochemistry and Biophysics, vol. 62, no. 3, pp. 409–414, 2012. View at Publisher · View at Google Scholar
  127. M. W. Maijenburg, C. Gilissen, S. M. Melief et al., “Nuclear receptors Nur77 and Nurr1 modulate mesenchymal stromal cell migration,” Stem Cells and Development, vol. 21, no. 2, pp. 228–238, 2012. View at Publisher · View at Google Scholar
  128. F. Belema-Bedada, S. Uchida, A. Martire, S. Kostin, and T. Braun, “Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2,” Cell Stem Cell, vol. 2, no. 6, pp. 566–575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Kumar and S. Ponnazhagan, “Bone homing of mesenchymal stem cells by ectopic α4 integrin expression,” FASEB Journal, vol. 21, no. 14, pp. 3917–3927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Liu, L. Wang, T. Kikuiri et al., “Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α,” Nature Medicine, vol. 17, no. 12, pp. 1594–1601, 2011. View at Publisher · View at Google Scholar
  131. O. M. Alvarez, P. M. Mertz, R. V. Smerbeck, and W. H. Eaglstein, “The healing of superficial skin wounds is stimulated by external electrical current,” Journal of Investigative Dermatology, vol. 81, no. 2, pp. 144–148, 1983. View at Google Scholar · View at Scopus
  132. G. J. Bourguignon and L. Y. Bourguignon, “Electric stimulation of protein and DNA synthesis in human fibroblasts,” FASEB Journal, vol. 1, no. 5, pp. 398–402, 1987. View at Google Scholar · View at Scopus
  133. S. E. Gardner, R. A. Frantz, and F. L. Schmidt, “Effect of electrical stimulation on chronic wound healing: a meta-analysis,” Wound Repair and Regeneration, vol. 7, no. 6, pp. 495–503, 1999. View at Publisher · View at Google Scholar · View at Scopus
  134. R. B. Borgens, “Stimulation of neuronal regeneration and development by steady electrical fields,” Advances in Neurology, vol. 47, pp. 547–564, 1988. View at Google Scholar · View at Scopus
  135. S. Shapiro, R. Borgens, R. Pascuzzi et al., “Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial,” Journal of Neurosurgery, vol. 2, no. 1, pp. 3–10, 2005. View at Google Scholar
  136. D. Perry, J. Colthurst, P. Giddings, D. A. McGrouther, J. Morris, and A. Bayat, “Treatment of symptomatic abnormal skin scars with electrical stimulation,” Journal of Wound Care, vol. 19, no. 10, pp. 447–453, 2010. View at Google Scholar · View at Scopus
  137. Z. Zhao, C. Watt, A. Karystinou et al., “Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field,” European Cells & Materials, vol. 22, pp. 344–358, 2011. View at Google Scholar
  138. W. Wu, H. Zhao, B. Xie et al., “Implanted spike wave electric stimulation promotes survival of the bone marrow mesenchymal stem cells and functional recovery in the spinal cord injured rats,” Neuroscience Letters, vol. 491, no. 1, pp. 73–78, 2011. View at Publisher · View at Google Scholar · View at Scopus