Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 470949, 7 pages
http://dx.doi.org/10.1155/2012/470949
Review Article

Ethical Implications in the Use of Embryonic and Adult Neural Stem Cells

1Department of Neurosciences, CUCS, Universidad de Guadalajara, 44630 Guadalajara, JAL, Mexico
2Department of Neurosurgery, Brain Tumor Stem Cells Laboratory, Johns Hopkins University, Baltimore, MD 4940, USA

Received 1 July 2012; Accepted 7 August 2012

Academic Editor: Sonia Luquin

Copyright © 2012 Rodrigo Ramos-Zúñiga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Publisher · View at Google Scholar
  2. J. A. Thomson and J. S. Odorico, “Human embryonic stem cell and embryonic germ cell lines,” Trends in Biotechnology, vol. 18, no. 2, pp. 53–57, 2000. View at Publisher · View at Google Scholar
  3. R. Pérez, Ars Médica Mexicana. I. Temas De Ética Médica, El Colegio Nacional, México, Mexico, 2011.
  4. M. Rosner, K. Schipany, B. Shanmugasundaram et al., “Amniotic fluid stem cells: future perspectives,” Stem Cells International, vol. 2012, Article ID 741810, 6 pages, 2012. View at Google Scholar
  5. G. M. Tomás Y Garrido and N. López Moratalla, “From the totipotence of the zygote to mature stem cells and reserve cells,” Cuadernos de Bioética, vol. 20, no. 70, pp. 317–331, 2009. View at Google Scholar · View at Scopus
  6. C. M. Kelly, O. J. Handley, and A. E. Rosser, “Human trials for neurodegenerative disease,” Methods in Molecular Biology, vol. 549, pp. 33–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. McCall and M. Revel, The Use of Embryonic Stem Cells in Therapeutic Research: Division of Human Sciences, Philosophy and Ethics of Sciences and Technology, Paris, France, 2001, http://unesdoc.unesco.org/images/0013/001322/132287e.pdf.
  8. H. Niknejad, T. Deihim, A. Ahmadiani et al., “Permanent expresion of midbrain dopaminergic neurons traits in differentiated amniotic epitelial cells,” Neuroscience Letters, vol. 506, no. 1, pp. 22–27, 2012. View at Publisher · View at Google Scholar
  9. M. Foti, “AACR Testimony on Stem Cell Research: American association for Cancer Research,” 2010, http://www.aacr.org/home/public–media/science-policy–government-affairs/testimony/2010-aacr-testimony-on-stem-cell-research.aspx.
  10. S. Ramon y Cajal, Degeneration and Regeneration of the Nervous System, Oxford University Press, London, UK, 1928.
  11. P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson et al., “Neurogenesis in the adult human hippocampus,” Nature Medicine, vol. 4, no. 11, pp. 1313–1317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Alvarez-Buylla and D. A. Lim, “For the long run: maintaining germinal niches in the adult brain,” Neuron, vol. 41, no. 5, pp. 683–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Quiñones-Hinojosa, N. Sanai, M. Soriano-Navarro et al., “Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells,” Journal of Comparative Neurology, vol. 494, no. 3, pp. 415–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Sanai, A. D. Tramontin, A. Quiñones-Hinojosa et al., “Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration,” Nature, vol. 427, no. 6976, pp. 740–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Capilla-Gonzalez, S. Gil-Perotin, A. Ferragud et al., “Exposure to N-ethyl-N-nitrosourea in adult mice alters structural and functional integrity of neurogenic sites,” PLoS ONE, vol. 7, no. 1, Article ID e29891, 2012. View at Google Scholar
  16. E. Nivet, M. Vignes, S. D. Girard et al., “Engraftment of human nasal olfactory stem cells restores neuroplasticity in mice with hippocampal lesions,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2808–2820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kaeser, J. F. Brunet, A. Wyss et al., “Autologous adult cortical cell transplantation enhances functional recovery following unilateral lesion of motor cortex in primates: a pilot study,” Neurosurgery, vol. 68, no. 5, pp. 1405–1416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Arias-Carrión and T. F. Yuan, “Autologous neural stem cell transplantation: a new treatment option for Parkinson's disease?” Medical Hypotheses, vol. 73, no. 5, pp. 757–759, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. N. Tandon, “Transplantation and stem cell research in neurosciences: where does India stand,” Neurology India, vol. 57, no. 6, pp. 706–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. V. Anisimov, “Cell therapy for Parkinson's disease: IV. Risks and future trends,” Advances in Gerontology, vol. 22, no. 3, pp. 418–439, 2009. View at Google Scholar · View at Scopus
  21. P. B. Medawar, “Immunity to homologous grafted skin; the fate of skin homografts,” British journal of experimental pathology, vol. 29, no. 1, pp. 58–69, 1948. View at Google Scholar · View at Scopus
  22. R. Cayrol, K. Wosik, J. L. Berard et al., “Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system,” Nature Immunology, vol. 9, no. 2, pp. 137–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Sivakumar, W. S. Foulds, C. D. Luu, E. A. Ling, and C. Kaur, “Retinal ganglion cell death is induced by microglia derived pro-inflammatory cytokines in the hypoxic neonatal retina,” Journal of Pathology, vol. 224, no. 2, pp. 245–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Gonzalez-Perez, A. Quiñones-Hinojosa, and J. M. Garcia-Verdugo, “Immunological control of adult neural stem cells,” Journal of Stem Cells, vol. 5, no. 1, pp. 23–31, 2010. View at Google Scholar · View at Scopus
  25. H. Okano, “Strategies toward CNS-regeneration using induced pluripotent stem cells,” Genome Informatics, vol. 23, no. 1, pp. 217–220, 2009. View at Google Scholar · View at Scopus
  26. P. B. Kuegler, B. Zimmer, T. Waldmann et al., “Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing,” ALTEX, vol. 27, no. 1, pp. 17–42, 2010. View at Google Scholar · View at Scopus
  27. Z. Master, M. McLeod, and I. Mendez, “Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson's disease,” Journal of Medical Ethics, vol. 33, no. 3, pp. 169–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Y. Snyder, C. Yoon, J. D. Flax, and J. D. Macklis, “Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11663–11668, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Gonzalez-Perez, R. Romero-Rodriguez, M. Soriano-Navarro, J. M. Garcia-Verdugo, and A. Alvarez-Buylla, “Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes,” Stem Cells, vol. 27, no. 8, pp. 2032–2043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. N. Tewarie, A. Hurtado, R. H. Bartels, A. Grotenhuis, and M. Oudega, “Stem cell-based therapies for spinal cord injury,” Journal of Spinal Cord Medicine, vol. 32, no. 2, pp. 105–114, 2009. View at Google Scholar · View at Scopus
  31. O. Tsuji, K. Miura, K. Fujiyoshi et al., “Cell therapy for spinal cord injury by neural stem/progenitor cells derived from IPS/ES cells,” Neurotherapeutics, vol. 8, no. 4, pp. 668–676, 2011. View at Publisher · View at Google Scholar
  32. R. H. Andres, R. Choi, G. K. Steinberg, and R. Guzman, “Potential of adult neural stem cells in stroke therapy,” Regenerative Medicine, vol. 3, no. 6, pp. 893–905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. I. Park, Y. D. Teng, and E. Y. Snyder, “The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue,” Nature Biotechnology, vol. 20, no. 11, pp. 1111–1117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Bonnamain, I. Neveu, and P. Naveilhan, “Neural stem/progenitor cells as a promising candidates for regenerative therapy of the central nervous system,” Frontiers in Cellular Neurosciences, vol. 6, no. 1, pp. 1–8, 2012. View at Google Scholar
  35. B. Carletti, F. Piemonte, and F. Rossi, “Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases,” Current Neuropharmacology, vol. 9, no. 2, pp. 313–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Pluchino, L. Zanotti, E. Brini, S. Ferrari, and G. Martino, “Regeneration and repair in multiple sclerosis: the role of cell transplantation,” Neuroscience Letters, vol. 456, no. 3, pp. 101–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Luan W. P. Liu, S. Q. Qu et al., “Treatment of newborns with severe injured brain with transplantation of human neural precursor cells,” Zhonghua Er Ke Za Zhi, vol. 49, no. 6, pp. 445–449, 2011. View at Google Scholar
  38. H. R. Martinez, M. T. Gonzalez-Garza, J. E. Moreno-Cuevas, E. Caro, E. Gutierrez-Jimenez, and J. J. Segura, “Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients,” Cytotherapy, vol. 11, no. 1, pp. 26–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Zhao and Q. Xu, “Emerging restorative treatments for parkinson's disease: manipulation and inducement of dopaminergic neurons from adult stem cells,” CNS and Neurological Disorders, vol. 10, no. 4, pp. 509–516, 2011. View at Google Scholar · View at Scopus
  40. V. Enzmann, E. Yolcu, H. J. Kaplan, and S. T. Ildstad, “Stem cells as tools in regenerative therapy for retinal degeneration,” Archives of Ophthalmology, vol. 127, no. 4, pp. 563–571, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Bonnamain, I. Neveu, and P. Naveilhan, “In vitro analyses of the immunosuppressive properties of neural stem/progenitor cells using anti-CD3/CD28-activated T cells,” Methods in Molecular Biology, vol. 677, pp. 233–243, 2011. View at Google Scholar · View at Scopus
  42. O. Einstein, N. Fainstein, I. Vaknin et al., “Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression,” Annals of Neurology, vol. 61, no. 3, pp. 209–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Y. Snyder and Y. D. Teng, “Stem cells and spinal cord repair,” The New England Journal of Medicine, vol. 366, no. 20, pp. 1940–1942, 2012. View at Publisher · View at Google Scholar
  44. M. Cusimano, D. Biziato, E. Brambilla et al., “Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord,” Brain, vol. 35, no. 2, pp. 447–460, 2012. View at Google Scholar
  45. G. Lilienthal, “Pros and cons of stem cell research- ethical issues,” 2010, http://suite101.com/article/pros-and-cons-of-stem-cell-research–ethical-issues-a254568.
  46. H. Guerrero-Cazares, O. Gonzalez-Perez, M. Soriano-Navarro, G. Zamora-Berridi, J. M. Garcia-Verdugo, and A. Quinones-Hinojosa, “Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain,” Journal of Comparative Neurology, vol. 519, no. 6, pp. 1165–1180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Sanai, T. Nguyen, and R. A. Ihrie, “Corridors of migrating neurons in the human brain and their decline during infancy,” Nature, vol. 478, no. 7369, pp. 382–386, 2011. View at Publisher · View at Google Scholar
  48. Y. Mu and F. H. . Gage, “Adult hippocampal neurogenesis and its role in Alzheimer's disease,” Molecular Neurodegeneration, vol. 6, article 85, 2011. View at Google Scholar
  49. S. W. Lee, G. D. Clemenson, and F. H. Gage, “New neurons in an aged brain,” Behavioural Brain Research, vol. 227, no. 2, pp. 497–507, 2012. View at Publisher · View at Google Scholar
  50. S. V. Anisimov, “Cell therapy for Parkinson's disease: III. Neonatal, fetal and embryonic stem cell-based applications,” Advances in Gerontology, vol. 22, no. 2, pp. 296–315, 2009. View at Google Scholar · View at Scopus
  51. S. V. Anisimov, “Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives,” Reviews in the Neurosciences, vol. 20, no. 5-6, pp. 347–381, 2009. View at Google Scholar · View at Scopus
  52. L. M. . Björklund, R. Sanchez-Pernaute, S. Chung et al., “Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a parkinson rat model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2344–2349, 2002. View at Google Scholar
  53. P. Karpowicz, C. B. Cohen, and D. Van Der Kooy, “Developing human-nonhuman chimeras in human stem cell research: ethical issues and boundaries,” Kennedy Institute of Ethics Journal, vol. 15, no. 2, pp. 107–134, 2005. View at Google Scholar · View at Scopus
  54. P. G. Hess, “Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural derivatives: ethics in the face of long-term uncertainty,” Accountability in Research, vol. 16, no. 4, pp. 175–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Sanai, A. Alvarez-Buylla, and M. S. Berger, “Mechanisms of disease: neural stem cells and the origin of gliomas,” New England Journal of Medicine, vol. 353, no. 8, pp. 811–822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. S. Grisolía, “Stem cell grafting for epilepsy: clinical promise and ethical concerns,” Epilepsy and Behavior, vol. 2, no. 4, pp. 318–323, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Rahul, K. Deshmukh, A. Kovács et al., “Drug discovery models and toxicity testing using embryonic and induced pluripotent stem-cell-derived cardiac and neuronal cells,” Stem Cells International, vol. 2012, Article ID 379569, 9 pages, 2012. View at Google Scholar
  58. D. A. Holt, G. M. Nauert, A. I. Othberg et al., “Infectious issues in human fetal neural transplantation,” Cell Transplantation, vol. 6, no. 6, pp. 553–556, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. “Universal declaration of human rights approved in the resolution of the 3d ordinary session of the United Nations General Assembly,” Revista Enfermagem em Novas Dimensoes, vol. 4, no. 3, pp. 181–184, 1978.
  60. V. R. Potter, “Bioethics for whom?” Annals of the New York Academy of Sciences, vol. 196, no. 4, pp. 200–205, 1972. View at Google Scholar · View at Scopus
  61. E. Rollin, Science and Ethics, Cambridge University Press, New York, NY, USA, 2006.
  62. B. Wexler, Brain and Culture: Neurobiology, Ideology, and Social Change, Massachusetts Institute of Technology, London, UK, 2006.
  63. J. Illes, Neuroethics: Defining the Issues in Theory, Practice, and Policy, Oxford University Press, New York, NY, USA, 2006.
  64. D. Ogawa, Y. Okada, M. Nakamura et al., “Evaluation of human fetal neural stem/progenitor cells as a source for cell replacement therapy for neurological disorders: properties and tumorigenicity after long-term in vitro maintenance,” Journal of Neuroscience Research, vol. 87, no. 2, pp. 307–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Binello and I. M. Germano, “Stem cells as therapeutic vehicles for the treatment of high-grade gliomas,” Neuro-Oncology, vol. 14, no. 3, pp. 256–265, 2011. View at Google Scholar
  66. T. Bobrow, T. Baldwin, L. Hornby, A. McCall-Smith, and A. McLaren, Stem Cell Therapy: The Ethical Issues, Nuffield Council on Bioethics, London, UK, 2000, http://www.nuffieldbioethics.org/sites/default/files/Stem%20cell%20therapy%20discussion%20paper.pdf.
  67. A. McLaren and G. Hermerén, “Ethical aspects of human stem cell research and use,” Opinion of the European group on ethics in science and new technologies to the European Commission, 2000, http://ec.europa.eu/bepa/european-group-ethics/docs/avis15_en.pdf.
  68. R. Ramos-Zúñiga, “Bioethical triangle of transplants,” Cirugia y Cirujanos, vol. 78, no. 4, pp. 361–368, 2010. View at Google Scholar · View at Scopus
  69. W. Glannon, Defining Right and Wrong in Brain Science, Dana Press, New York, NY, USA, 2007.
  70. A. Abbott, “Europe rules against stem-cell patents,” Nature, vol. 471, no. 7338, p. 280, 2011. View at Publisher · View at Google Scholar · View at Scopus