Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 697094, 6 pages
http://dx.doi.org/10.1155/2012/697094
Research Article

Intrasplenic Transplantation of Bioencapsulated Mesenchymal Stem Cells Improves the Recovery Rates of 90% Partial Hepatectomized Rats

Departments of Physiology, Medicine, and Biomedical Engineering, Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Room 1004, Montreal, QC, Canada H3G 1Y6

Received 19 May 2012; Revised 2 November 2012; Accepted 5 November 2012

Academic Editor: B. Bunnell

Copyright © 2012 Zun Chang Liu and Thomas Ming Swi Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Kim, K. H. Yoo, K. S. Choi et al., “Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell,” Cytokine, vol. 31, no. 2, pp. 119–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. E. Cressman, L. E. Greenbaum, R. A. DeAngelis et al., “Liver failure and defective hepatocyte regeneration in interleukin-6- deficient mice,” Science, vol. 274, no. 5291, pp. 1379–1383, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Lanza, R. Langer, and J. Vacanti, Principles of Tissue Engineering, Elsevier Academic Press, San Diego, Calif, USA, 3rd edition, 2007.
  4. T. M. S. Chang, “Semipermeable microcapsules,” Science, vol. 146, no. 3643, pp. 524–525, 1964. View at Google Scholar · View at Scopus
  5. T. M. Swi Chang, “Therapeutic applications of polymeric artificial cells,” Nature Reviews Drug Discovery, vol. 4, no. 3, pp. 221–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. M. S. Chang, ARTIFICIAL CELLS: Biotechnology, Nanotechnology, Blood Substitutes, Regenerative Medicine, Bioencapsulation, Cell/Stem Cell Therapy, World Scientific Publisher/Imperial College Press, London, UK, 2007.
  7. G. Orive, R. M. Hernández, A. R. Gascón et al., “Cell encapsulation: promise and progress,” Nature Medicine, vol. 9, no. 1, pp. 104–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. L. Pedraz and G. Orive, “Therapeutic applications of cell microencapsulation,” Advances in Experimental Medicine and Biology, vol. 670, pp. 1–147, 2010. View at Google Scholar
  9. Z. C. Liu and M. S. Chang, “Transdifferentiation of bioencapsulated bone marrow cells into hepatocyte-like cells in the 90% hepatectomized rat model,” Liver Transplantation, vol. 12, no. 4, pp. 566–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Kobayashi, M. Ito, J. Nakamura, J. Cai, J. M. Hammel, and I. J. Fox, “Treatment of carbon tetrachloride and phenobarbital-induced chronic liver failure with intrasplenic hepatocyte transplantation,” Cell Transplantation, vol. 9, no. 5, pp. 671–673, 2000. View at Google Scholar · View at Scopus
  11. Y. Q. Xu and Z. C. Liu, “Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches,” Stem Cell Reviews, vol. 4, no. 2, pp. 101–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Aoki, Y. Umehara, C. Ferraresso et al., “Intrasplenic transplantation of encapsulated cells: a novel approach to cell therapy,” Cell Transplantation, vol. 11, no. 6, pp. 553–561, 2002. View at Google Scholar · View at Scopus
  13. D. Briand, N. A. Centeno, C. Astre, B. Saint Aubert, and H. Joyeux, “Comparison of two methods of autologous intrasplenic hepatocellular transplantation in partially hepatectomized dogs,” European Surgical Research, vol. 25, no. 2, pp. 104–109, 1993. View at Google Scholar · View at Scopus
  14. H. Makino, S. Togo, T. Kubota et al., “A good model of hepatic failure after excessive hepatectomy in mice,” Journal of Surgical Research, vol. 127, no. 2, pp. 171–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Panis, D. M. McMullan, and J. C. Emond, “Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection,” Surgery, vol. 121, no. 2, pp. 142–149, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Salgo and W. A. Pryor, “Trolox inhibits peroxynitrite-mediated oxidative stress and apoptosis in rat thymocytes,” Archives of Biochemistry and Biophysics, vol. 333, no. 2, pp. 482–488, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hasegawa, T. Kubota, N. Fukuyama et al., “Apoptosis of hepatocytes is a main cause of inducing lethal hepatic failure after excessive hepatectomy in rats,” Transplantation Proceedings, vol. 31, no. 1-2, pp. 558–559, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Blindenbacher, X. Wang, I. Langer, R. Savino, L. Terracciano, and M. H. Heim, “Interleukin 6 is important for survival after partial hepatectomy in mice,” Hepatology, vol. 38, no. 3, pp. 674–682, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Fausto, “Liver regeneration,” Journal of Hepatology, vol. 32, no. 1, supplement, pp. 19–31, 2000. View at Google Scholar · View at Scopus
  20. M. Leist, F. Gantner, I. Bohlinger, G. Tiegs, P. G. Germann, and A. Wendel, “Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models,” American Journal of Pathology, vol. 146, no. 5, pp. 1220–1234, 1995. View at Google Scholar · View at Scopus
  21. M. Shimizu, A. Hara, M. Okuno et al., “Mechanism of retarded liver regeneration in plasminogen activator—deficient mice: impaired activation of hepatocyte growth factor after fas-mediated massive hepatic apoptosis,” Hepatology, vol. 33, no. 3, pp. 569–576, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Schulze-Bergkamen, D. Brenner, A. Krueger et al., “Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt,” Hepatology, vol. 39, no. 3, pp. 645–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Van Poll, B. Parekkadan, C. H. Cho et al., “Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo,” Hepatology, vol. 47, no. 5, pp. 1634–1643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kaido, S. Yamaoka, J. Tanaka et al., “Continuous HGF supply from HGF-expressing fibroblasts transplanted into spleen prevents CCl4-induced acute liver injury in rats,” Biochemical and Biophysical Research Communications, vol. 218, no. 1, pp. 1–5, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. F. P. Russo, M. R. Alison, B. W. Bigger et al., “The bone marrow functionally contributes to liver fibrosis,” Gastroenterology, vol. 130, no. 6, pp. 1807–1821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Forbes, F. P. Russo, V. Rey et al., “A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis,” Gastroenterology, vol. 126, no. 4, pp. 955–963, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Wilhelm, I. Leister, P. Sabandal, P. Krause, H. Becker, and P. M. Markus, “Acute impairment of hepatic microcirculation and recruitment of nonparenchymal cells by intrasplenic hepatocyte transplantation,” Journal of Pediatric Surgery, vol. 39, no. 8, pp. 1214–1219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Rosenthal, S. C. Chen, W. Hewitt et al., “Techniques for intrasplenic hepatocyte transplantation in the large animal model,” Surgical Endoscopy, vol. 10, no. 11, pp. 1075–1079, 1996. View at Google Scholar · View at Scopus
  29. A. Alhadlaq and J. J. Mao, “Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells,” Journal of Dental Research, vol. 82, no. 12, pp. 951–956, 2003. View at Google Scholar · View at Scopus
  30. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Liu and T. M. S. Chang, “Effects of bone marrow cells on hepatocytes: when co- cultured or co-encapsulated together,” Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, vol. 28, no. 4, pp. 365–374, 2000. View at Google Scholar · View at Scopus
  32. J. Gaub and J. Iversen, “Rat liver regeneration after 90% partial hepatectomy,” Hepatology, vol. 4, no. 5, pp. 902–904, 1984. View at Google Scholar · View at Scopus