Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 767195, 7 pages
http://dx.doi.org/10.1155/2012/767195
Review Article

Nonhuman Primate Induced Pluripotent Stem Cells in Regenerative Medicine

1Department of Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA
2Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX 78229, USA
3Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, and College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China

Received 16 September 2011; Accepted 27 January 2012

Academic Editor: Rajarshi Pal

Copyright © 2012 Yuehong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Agarwal, M. W. Lensch, and G. Q. Daley, “Current prospects for the generation of patient-specific pluripotent cells from adult tissues,” Regenerative Medicine, vol. 2, no. 5, pp. 743–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Mason and P. Dunnill, “Assessing the value of autologous and allogeneic cells for regenerative medicine,” Regenerative Medicine, vol. 4, no. 6, pp. 835–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Rossant, “Stem cells: the magic brew,” Nature, vol. 448, no. 7151, pp. 260–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hanna, M. Wernig, S. Markoulaki et al., “Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin,” Science, vol. 318, no. 5858, pp. 1920–1923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Zhao, Z.-N. Zhang, Z. Rong, and Y. Xu, “Immunogenicity of induced pluripotent stem cells,” Nature, vol. 474, no. 7350, pp. 212–216, 2011. View at Publisher · View at Google Scholar
  8. B. W. Carey, S. Markoulaki, J. Hanna et al., “Reprogramming of murine and human somatic cells using a single polycistronic vector,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 157–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. L. Boulting, E. Kiskinis, G. F. Croft et al., “A functionally characterized test set of human induced pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 3, pp. 279–287, 2011. View at Publisher · View at Google Scholar
  11. C. Bock, E. Kiskinis, G. Verstappen et al., “Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines,” Cell, vol. 144, no. 3, pp. 439–452, 2011. View at Publisher · View at Google Scholar
  12. D. H. Abbott, D. K. Barnett, R. J. Colman, M. E. Yamamoto, and N. J. Schultz-Darken, “Aspects of common marmoset basic biology and life history important for biomedical research,” Comparative Medicine, vol. 53, no. 4, pp. 339–350, 2003. View at Google Scholar · View at Scopus
  13. K. Mansfield, “Marmoset models commonly used in biomedical research,” Comparative Medicine, vol. 53, no. 4, pp. 383–392, 2003. View at Google Scholar · View at Scopus
  14. S. Tardif, K. Bales, L. Williams et al., “Preparing New World monkeys for laboratory research,” ILAR Journal, vol. 47, no. 4, pp. 307–315, 2006. View at Google Scholar · View at Scopus
  15. D. Cyranoski, “Marmoset model takes centre stage,” Nature, vol. 459, no. 7246, p. 492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. H. C. H. M. Philippens, B. A. 't Hart, and G. Torres, “The MPTP marmoset model of Parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases,” Drug Discovery Today, vol. 15, no. 23-24, pp. 985–990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Bihel, P. Pro-Sistiaga, A. Letourneur et al., “Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 2, pp. 273–285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Newman, W. M. Kenkel, E. C. Aronoff, N. A. Bock, M. R. Zametkin, and A. C. Silva, “A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus,” Brain Research Reviews, vol. 62, no. 1, pp. 1–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. M. Kuhn, D. Karolchik, A. S. Zweig et al., “The UCSC genome browser database: update 2009,” Nucleic Acids Research, vol. 37, no. 1, pp. D755–D761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Sasaki, H. Suemizu, A. Shimada et al., “Generation of transgenic non-human primates with germline transmission,” Nature, vol. 459, no. 7246, pp. 523–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Schatten and S. Mitalipov, “Developmental biology: transgenic primate offspring,” Nature, vol. 459, no. 7246, pp. 515–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Iwanami, S. Kaneko, M. Nakamura et al., “Transplantation of human neural stem cells for spinal cord injury in primates,” Journal of Neuroscience Research, vol. 80, no. 2, pp. 182–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Yamane, M. Nakamura, A. Iwanami et al., “Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets,” Journal of Neuroscience Research, vol. 88, no. 7, pp. 1394–1405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Liu, F. Zhu, J. Yong et al., “Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts,” Cell Stem Cell, vol. 3, no. 6, pp. 587–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Wu, Y. Zhang, A. Mishra, S. D. Tardif, and P. J. Hornsby, “Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts,” Stem Cell Research, vol. 4, no. 3, pp. 180–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Tomioka, T. Maeda, H. Shimada et al., “Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors, including Lin28,” Genes to Cells, vol. 15, no. 9, pp. 959–969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. W. S. Chan, P. H. Cheng, A. Neumann, and J. J. Yang, “Reprogramming Huntington monkey skin cells into pluripotent stem cells,” Cellular Reprogramming, vol. 12, no. 5, pp. 509–517, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Zhong, G. D. Trobridge, X. Zhang et al., “Efficient generation of nonhuman primate induced pluripotent stem cells,” Stem Cells and Development, vol. 20, no. 5, pp. 795–807, 2011. View at Publisher · View at Google Scholar
  29. M. Deleidi, G. Hargus, P. Hallett, T. Osborn, and O. Isacson, “Development of histocompatible primate-induced pluripotent stem cells for neural transplantation,” Stem Cells, vol. 29, no. 7, pp. 1052–1063, 2011. View at Publisher · View at Google Scholar
  30. F. F. Zhu, P. B. Zhang, D. H. Zhang et al., “Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells,” Diabetologia, vol. 54, no. 9, pp. 2325–2336, 2011. View at Publisher · View at Google Scholar
  31. B. Zhong, K. L. Watts, J. L. Gori et al., “Safeguarding nonhuman primate iPS cells with suicide genes,” Molecular Therapy, vol. 19, no. 9, pp. 1667–1675, 2011. View at Publisher · View at Google Scholar
  32. I. Friedrich Ben-Nun, S. C. Montague, M. L. Houck et al., “Induced pluripotent stem cells from highly endangered species,” Nature Methods, vol. 8, no. 10, pp. 829–831, 2011. View at Publisher · View at Google Scholar
  33. S. Okamoto and M. Takahashi, “Induction of retinal pigment epithelial cells from monkey iPS cells,” Investigative Ophthalmology & Visual Science, vol. 52, no. 12, pp. 8785–8790, 2011. View at Google Scholar
  34. Y. Wu, D. W. Melton, Y. Zhang, and P. J. Hornsby, “Improved coinfection with amphotropic pseudotyped retroviral vectors,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 901079, 7 pages, 2009. View at Publisher · View at Google Scholar
  35. D. Huangfu, K. Osafune, R. Maehr et al., “Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2,” Nature Biotechnology, vol. 26, no. 11, pp. 1269–1275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. D. O'Connor, M. D. Kardel, I. Iosfina et al., “Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells,” Stem Cells, vol. 26, no. 5, pp. 1109–1116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Malkinson and M. E. Spira, “Clustering of excess growth resources within leading growth cones underlies the recurrent “deposition” of varicosities along developing neurites,” Experimental Neurology, vol. 225, no. 1, pp. 140–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. M. Chan, S. Ratanasirintrawoot, I. H. Park et al., “Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells,” Nature Biotechnology, vol. 27, no. 11, pp. 1033–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. A. Prokhorova, L. M. Harkness, U. Frandsen et al., “Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel,” Stem Cells and Development, vol. 18, no. 1, pp. 47–54, 2009. View at Publisher · View at Google Scholar
  40. H. Hentze, P. L. Soong, S. T. Wang, B. W. Phillips, T. C. Putti, and N. R. Dunn, “Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies,” Stem Cell Research, vol. 2, no. 3, pp. 198–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Tabar, G. Panagiotakos, E. D. Greenberg et al., “Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain,” Nature Biotechnology, vol. 23, no. 5, pp. 601–606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Pomp, I. Brokhman, L. Ziegler et al., “PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells,” Brain Research, vol. 1230, pp. 50–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. C. Zhang, M. Wernig, I. D. Duncan, O. Brüstle, and J. A. Thomson, “In vitro differentiation of transplantable neural precursors from human embryonic stem cells,” Nature Biotechnology, vol. 19, no. 12, pp. 1129–1133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. X. J. Li and S. C. Zhang, “In vitro differentiation of neural precursors from human embryonic stem cells,” Methods in Molecular Biology, vol. 331, pp. 169–177, 2006. View at Google Scholar · View at Scopus
  45. S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima, M. Sadelain, and L. Studer, “Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling,” Nature Biotechnology, vol. 27, no. 3, pp. 275–280, 2009. View at Publisher · View at Google Scholar · View at Scopus