Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012 (2012), Article ID 841203, 11 pages
http://dx.doi.org/10.1155/2012/841203
Research Article

Development of a Vascularized Skin Construct Using Adipose-Derived Stem Cells from Debrided Burned Skin

1Dental and Trauma Research Detachment, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234-6315, USA
2Department of Extremity Trauma Research and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234-6315, USA
3Burn Center, United States Army Institute of Surgical Research, Fort Sam Houston, TX 78234-6315, USA

Received 21 February 2012; Accepted 25 May 2012

Academic Editor: Roland Meisel

Copyright © 2012 Rodney K. Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Large body surface area burns pose significant therapeutic challenges. Clinically, the extent and depth of burn injury may mandate the use of allograft for temporary wound coverage while autografts are serially harvested from the same donor areas. The paucity of donor sites in patients with burns involving large surface areas highlights the need for better skin substitutes that can achieve early and complete coverage and retain normal skin durability with minimal donor requirements. We have isolated autologous stem cells from the adipose layer of surgically debrided burned skin (dsASCs), using a point-of-care stem cell isolation device. These cells, in a collagen—polyethylene glycol fibrin-based bilayer hydrogel, differentiate into an epithelial layer, a vascularized dermal layer, and a hypodermal layer. All-trans-retinoic acid and fenofibrate were used to differentiate dsASCs into epithelial-like cells. Immunocytochemical analysis showed a matrix- and time-dependent change in the expression of stromal, vascular, and epithelial cell markers. These results indicate that stem cells isolated from debrided skin can be used as a single autologous cell source to develop a vascularized skin construct without culture expansion or addition of exogenous growth factors. This technique may provide an alternative approach for cutaneous coverage after extensive burn injuries.