Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 915160, 7 pages
http://dx.doi.org/10.1155/2012/915160
Research Article

Growth Factors Released from Gelatin Hydrogel Microspheres Increase New Neurons in the Adult Mouse Brain

1Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Aichi 467-8601, Nagoya, Japan
2Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences, Aichi 467-8601, Nagoya, Japan
3Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

Received 23 June 2012; Accepted 9 August 2012

Academic Editor: Oscar Gonzalez-Perez

Copyright © 2012 Kanako Nakaguchi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Bédard and A. Parent, “Evidence of newly generated neurons in the human olfactory bulb,” Developmental Brain Research, vol. 151, no. 1-2, pp. 159–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson et al., “Neurogenesis in the adult human hippocampus,” Nature Medicine, vol. 4, no. 11, pp. 1313–1317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Kirschenbaum, M. Nedergaard, A. Preuss, K. Barami, R. A. R. Fraser, and S. A. Goldman, “In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain,” Cerebral Cortex, vol. 4, no. 6, pp. 576–589, 1994. View at Google Scholar · View at Scopus
  4. A. Quiñones-Hinojosa, N. Sanai, M. Soriano-Navarro et al., “Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells,” Journal of Comparative Neurology, vol. 494, no. 3, pp. 415–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. S. Roy, S. Wang, L. Jiang et al., “In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus,” Nature Medicine, vol. 6, no. 3, pp. 271–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Sanai, A. D. Tramontin, A. Quiñones-Hinojosa et al., “Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration,” Nature, vol. 427, no. 6976, pp. 740–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Alvarez-Buylla and J. M. García-Verdugo, “Neurogenesis in adult subventricular zone,” Journal of Neuroscience, vol. 22, no. 3, pp. 629–634, 2002. View at Google Scholar · View at Scopus
  8. R. A. Ihrie and A. Álvarez-Buylla, “Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain,” Neuron, vol. 70, no. 4, pp. 674–686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Kaneko and K. Sawamoto, “Adult neurogenesis and its alteration under pathological conditions,” Neuroscience Research, vol. 63, no. 3, pp. 155–164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Lledo, M. Alonso, and M. S. Grubb, “Adult neurogenesis and functional plasticity in neuronal circuits,” Nature Reviews Neuroscience, vol. 7, no. 3, pp. 179–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Zhao, W. Deng, and F. H. Gage, “Mechanisms and functional implications of adult neurogenesis,” Cell, vol. 132, no. 4, pp. 645–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, “Neuronal replacement from endogenous precursors in the adult brain after stroke,” Nature Medicine, vol. 8, no. 9, pp. 963–970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. W. Levison and J. E. Goldman, “Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain,” Neuron, vol. 10, no. 2, pp. 201–212, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Menn, J. M. Garcia-Verdugo, C. Yaschine, O. Gonzalez-Perez, D. Rowitch, and A. Alvarez-Buylla, “Origin of oligodendrocytes in the subventricular zone of the adult brain,” Journal of Neuroscience, vol. 26, no. 30, pp. 7907–7918, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Parent, Z. S. Vexler, C. Gong, N. Derugin, and D. M. Ferriero, “Rat forebrain neurogenesis and striatal neuron replacement after focal stroke,” Annals of Neurology, vol. 52, no. 6, pp. 802–813, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Picard-Riera, L. Decker, C. Delarasse et al., “Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13211–13216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Yamashita, M. Ninomiya, P. H. Acosta et al., “Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum,” Journal of Neuroscience, vol. 26, no. 24, pp. 6627–6636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Grabel, “Prospects for pluripotent stem cell therapies: into the clinic and back to the bench,” Journal of Cellular Biochemistry, vol. 113, no. 2, pp. 381–387, 2012. View at Google Scholar
  19. K. Pfannkuche, T. Hannes, M. Khalil et al., “Induced pluripotent stem cells: a new approach for physiological research,” Cellular Physiology and Biochemistry, vol. 26, no. 2, pp. 105–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Kaneko, E. Kako, and K. Sawamoto, “Prospects and limitations of using endogenous neural stem cells for brain regeneration,” Genes, vol. 2, no. 1, pp. 107–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Nakaguchi, H. Masuda, N. Kaneko, and K. Sawamoto, “Strategies for regenerating striatal neurons in the adult brain by using endogenous neural stem cells,” Neurology Research International, vol. 2011, Article ID 898012, 10 pages, 2011. View at Publisher · View at Google Scholar
  22. H. Okano, M. Sakaguchi, K. Ohki, N. Suzuki, and K. Sawamoto, “Regeneration of the central nervous system using endogenous repair mechanisms,” Journal of Neurochemistry, vol. 102, no. 5, pp. 1459–1465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Okano and K. Sawamoto, “Neural stem cells: Involvement in adult neurogenesis and CNS repair,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1500, pp. 2111–2122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Kempermann, “Regulation,” in Adult Neurogenesis: Stem Cells and Neuronal Development in the Adult Brain, pp. 255–325, Oxford University Press, New York, NY, USA, 2006. View at Google Scholar
  25. W. Löscher and H. Potschka, “Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases,” Progress in Neurobiology, vol. 76, no. 1, pp. 22–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Misra, S. Ganesh, A. Shahiwala, and S. P. Shah, “Drug delivery to the central nervous system: a review,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 2, pp. 252–273, 2003. View at Google Scholar · View at Scopus
  27. Y. Tabata and Y. Ikada, “Protein release from gelatin matrices,” Advanced Drug Delivery Reviews, vol. 31, no. 3, pp. 287–301, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Tabata and Y. Ikada, “Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities,” Biomaterials, vol. 20, no. 22, pp. 2169–2175, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Nakagawa, T. Sakamoto, H. Hiraumi et al., “Topical insulin-like growth factor 1 treatment using gelatin hydrogels for glucocorticoid-resistant sudden sensorineural hearing loss: a prospective clinical trial,” BMC Medicine, vol. 8, article 76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Marui, Y. Tabata, S. Kojima et al., “A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel—an initial report of the phase I-IIa study,” Circulation Journal, vol. 71, no. 8, pp. 1181–1186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Hato, J. Nota, H. Komobuchi et al., “Facial nerve decompression surgery using bFGF-impregnated biodegradable gelatin hydrogel in patients with Bell palsy,” Otolaryngology, vol. 146, no. 4, pp. 641–646, 2012. View at Google Scholar
  32. G. Takagi, M. Miyamoto, S. Tara et al., “Controlled-release basic fibroblast growth factor for peripheral artery disease: comparison with autologous bone marrow-derived stem cell transfer,” Tissue Engineering A, vol. 17, no. 21-22, pp. 2787–2794, 2011. View at Google Scholar
  33. E. Rinderknecht and R. E. Humbel, “Amino terminal sequences of two polypeptides from human serum with nonsuppressible insulin like and cell growth promoting activities: evidence for structural homology with insulin B chain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 12, pp. 4379–4381, 1976. View at Google Scholar · View at Scopus
  34. E. Rinderknecht and R. E. Humbel, “The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin,” Journal of Biological Chemistry, vol. 253, no. 8, pp. 2769–2776, 1978. View at Google Scholar · View at Scopus
  35. H. Funakoshi and T. Nakamura, “Hepatocyte growth factor: from diagnosis to clinical applications,” Clinica Chimica Acta, vol. 327, no. 1-2, pp. 1–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Nakamura, K. Nawa, and A. Ichihara, “Partial formation and characterization of hepatocyte growth factor from serum of hepatectomized rats,” Biochemical and Biophysical Research Communications, vol. 122, no. 3, pp. 1450–1459, 1984. View at Google Scholar · View at Scopus
  37. T. Nakamura, T. Nishizawa, M. Hagiya et al., “Molecular cloning and expression of human hepatocyte growth factor,” Nature, vol. 342, no. 6248, pp. 440–443, 1989. View at Google Scholar · View at Scopus
  38. T. Kojima, Y. Hirota, M. Ema et al., “Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum,” Stem Cells, vol. 28, no. 3, pp. 545–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Ninomiya, T. Yamashita, N. Araki, H. Okano, and K. Sawamoto, “Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone,” Neuroscience Letters, vol. 403, no. 1-2, pp. 63–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Gu, J. Zhang, L. Guo et al., “A phase I clinical study of naked DNA expressing two isoforms of hepatocyte growth factor to treat patients with critical limb ischemia,” The Journal of Gene Medicine, vol. 13, no. 11, pp. 602–610, 2011. View at Google Scholar
  41. T. D. Henry, A. T. Hirsch, J. Goldman et al., “Safety of a non-viral plasmid-encoding dual isoforms of heypatocyte growth factor in critical limb ischemia patients: a phase I study,” Gene Therapy, vol. 18, no. 8, pp. 788–794, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Shigematsu, K. Yasuda, T. Iwai et al., “Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia,” Gene Therapy, vol. 17, no. 9, pp. 1152–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Vicario-Abejón, M. J. Yusta-Boyo, C. Fernández-Moreno, and F. De Pablo, “Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia,” Journal of Neuroscience, vol. 23, no. 3, pp. 895–906, 2003. View at Google Scholar · View at Scopus
  44. G. J. Brooker, M. Kalloniatis, V. C. Russo et al., “Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells,” Journal of Neuroscience Research, vol. 59, no. 3, pp. 332–341, 2000. View at Google Scholar
  45. Y. Arsenijevic, S. Weiss, B. Schneider, and P. Aebischer, “Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2,” Journal of Neuroscience, vol. 21, no. 18, pp. 7194–7202, 2001. View at Google Scholar · View at Scopus
  46. R. D. Hodge, A. Joseph D'Ercole, and J. R. O'Kusky, “Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex,” Journal of Neuroscience, vol. 24, no. 45, pp. 10201–10210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Kooijman, S. Sarre, Y. Michotte, and J. D. Keyser, “Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke?” Stroke, vol. 40, no. 4, pp. e83–e88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Garzotto, P. Giacobini, T. Crepaldi, A. Fasolo, and S. De Marchis, “Hepatocyte growth factor regulates migration of olfactory interneuron precursors in the rostral migratory stream through Met-Grb2 coupling,” Journal of Neuroscience, vol. 28, no. 23, pp. 5901–5909, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Nicoleu, O. Benzakour, F. Agasse et al., “Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal,” Stem Cells, vol. 27, no. 2, pp. 408–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. T. W. Wang, H. Zhang, M. R. Gyetko, and J. M. Parent, “Hepatocyte growth factor acts as a mitogen and chemoattractant for postnatal subventricular zone-olfactory bulb neurogenesis,” Molecular and Cellular Neuroscience, vol. 48, no. 1, pp. 38–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Kokuzawa, S. Yoshimura, H. Kitajima et al., “Hepatocyte growth factor promotes proliferation and neuronal differentiation of neural stem cells from mouse embryos,” Molecular and Cellular Neuroscience, vol. 24, no. 1, pp. 190–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Kato, S. Yoshimura, J. Kokuzawa et al., “Hepatocyte growth factor promotes neuronal differentiation of neural stem cells derived from embryonic stem cells,” NeuroReport, vol. 15, no. 1, pp. 5–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. T. R. Doeppner, B. Kaltwasser, A. Elali, A. Zechariah, D. M. Hermann, and M. Bähr, “Acute hepatocyte growth factor treatment induces long-term neuroprotection and stroke recovery via mechanisms involving neural precursor cell proliferation and differentiation,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 5, pp. 1251–1262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Shang, K. Deguchi, Y. Ohta et al., “Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion,” Journal of Neuroscience Research, vol. 89, no. 1, pp. 86–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Inaoka, T. Nakagawa, Y. S. Kikkawa et al., “Local application of hepatocyte growth factor using gelatin hydrogels attenuates noise-induced hearing loss in guinea pigs,” Acta Oto-Laryngologica, vol. 129, no. 4, pp. 453–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Okunishi, O. Sasaki, T. Okasora et al., “Intratracheal delivery of hepatocyte growth factor directly attenuates allergic airway inflammation in mice,” International Archives of Allergy and Immunology, vol. 149, supplement 1, pp. 14–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Wang, M. J. Cooke, C. M. Morshead, and M. S. Shoichet, “Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury,” Biomaterials, vol. 33, no. 9, pp. 2681–2692, 2012. View at Google Scholar
  58. R. J. Dempsey and H. S. G. Kalluri, “Ischemia-induced neurogenesis: role of growth factors,” Neurosurgery Clinics of North America, vol. 18, no. 1, pp. 183–190, 2007. View at Publisher · View at Google Scholar · View at Scopus