Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 623875, 13 pages
http://dx.doi.org/10.1155/2013/623875
Clinical Study

Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study

1Department of Medical Services and Clinical Research, NeuroGen Brain and Spine Institute, Surana Sethia Hospital and Research Centre, Sion Trombay Road, Chembur, Mumbai 400071, India
2Department of Research & Development, NeuroGen Brain and Spine Institute, Surana Sethia Hospital and Research Centre, Sion Trombay Road, Chembur, Mumbai 400071, India
3Department of NeuroRehabilitation, NeuroGen Brain and Spine Institute, Surana Sethia Hospital and Research Centre, Sion-Trombay Road, Chembur, Mumbai 400071, India

Received 4 May 2013; Revised 24 June 2013; Accepted 7 July 2013

Academic Editor: Chen Lin

Copyright © 2013 Alok Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kopetz and E. Endowed, “Autism worldwide: prevalence, perceptions, acceptance, action,” Journal of Social Sciences, vol. 8, no. 2, pp. 196–201, 2012. View at Google Scholar
  2. S. Myers and C. Johnson, “American academy of pediatrics council on children with disabilities. Management of children with autism spectrum disorders,” Pediatrics, vol. 120, no. 5, pp. 1162–1182, 2007. View at Google Scholar
  3. S. Gray, “Gene therapy and neurodevelopmental disorders,” Neuropharmacology, vol. 68, pp. 136–142, 2012. View at Publisher · View at Google Scholar
  4. T. E. Ichim, F. Solano, E. Glenn et al., “Stem cell therapy for autism,” Journal of Translational Medicine, vol. 5, p. 30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Siniscalco, “Stem cell research: an opportunity for autism spectrum disorders treatment,” Autism, vol. 2, p. 2, 2012. View at Google Scholar
  6. Y. Fujita, M. Ihara, T. Ushiki et al., “Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow,” Stroke, vol. 41, no. 12, pp. 2938–2943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Prasad, S. Mohanty, R. Bhatia et al., “Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischemic stroke: a pilot study,” Indian Journal of Medical Research, vol. 136, no. 2, pp. 221–228, 2012. View at Google Scholar
  8. L. F. Geffner, P. Santacruz, M. Izurieta et al., “Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies,” Cell Transplantation, vol. 17, no. 12, pp. 1277–1293, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Sharma, N. Gokulchandran, G. Chopra et al., “Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life,” Cell Transplantation, vol. 21, supplement 1, pp. S79–S90, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Chen, Y. Wang, Z. Xu et al., “Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy,” Journal of Translational Medicine, vol. 26, no. 11, p. 21, 2013. View at Google Scholar
  11. A. A. Khan, N. Parveen, V. S. Mahaboob et al., “Safety and efficacy of autologous bone marrow stem cell transplantation through hepatic artery for the treatment of chronic liver failure: a preliminary study,” Transplantation Proceedings, vol. 40, no. 4, pp. 1140–1144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Prabhakar, N. Marwaha, V. Lal, R. Sharma, R. Rajan, and N. Khandelwal, “Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study,” Neurology India, vol. 60, no. 5, pp. 465–469, 2012. View at Google Scholar
  13. N. A. Kishk, H. Gabr, S. Hamdy et al., “Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 24, no. 8, pp. 702–708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. V. Carlson, K. M. Boyd, and D. J. Webb, “The revision of the declaration of Helsinki: past, present and future,” British Journal of Clinical Pharmacology, vol. 57, no. 6, pp. 695–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Petit, M. Szyper-Kravitz, A. Nagler et al., “G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4,” Nature Immunology, vol. 3, no. 7, pp. 687–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Zhu and S. Murthy, “Stem cell separation technologies,” Current Opinion in Chemical Engineering, vol. 2, no. 1, pp. 3–7, 2013. View at Google Scholar
  17. A. Khan, S. R. Khan, E. B. Shankles, and N. L. Polissar, “Relative sensitivity of the Montgomery-Asberg depression rating scale, the Hamilton depression rating scale and the clinical global impressions rating scale in antidepressant clinical trials,” International Clinical Psychopharmacology, vol. 17, no. 6, pp. 281–285, 2002. View at Google Scholar · View at Scopus
  18. A. Kadouri, E. Corruble, and B. Falissard, “The improved Clinical Global Impression Scale (iCGI): development and validation in depression,” BMC Psychiatry, vol. 7, p. 7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Leucht and R. R. Engel, “The relative sensitivity of the clinical global impressions scale and the brief psychiatric rating scale in antipsychotic drug trials,” Neuropsychopharmacology, vol. 31, no. 2, pp. 406–412, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. A. Stigler, J. E. Mullett, C. A. Erickson, D. J. Posey, and C. J. McDougle, “Paliperidone for irritability in adolescents and young adults with autistic disorder,” Psychopharmacology, vol. 223, no. 2, pp. 237–245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Jordan, D. Robertson, M. Catani, M. Craig, and D. Murphy, “Aripiprazole in the treatment of challenging behaviour in adults with autism spectrum disorder,” Psychopharmacology, vol. 223, no. 3, pp. 357–360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Hollander, L. Soorya, W. Chaplin et al., “A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders,” American Journal of Psychiatry, vol. 169, no. 3, pp. 292–299, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Natrajan, A. Kumar, H. Goyal et al., “Scientific report on research project for development of Indian Scale for assessment of autism,” http://www.thenationaltrust.co.in/nt/index.php?option=com_content&task=view&id=30&Itemid=130, 2008.
  24. P. Gerrard, R. Goldstein, M. Divit et al., “Validity and reliability of the FUM instrument in the inpatient burn rehabilitation population,” Archives of Physical Medicine and Rehabilitation, 2013. View at Publisher · View at Google Scholar
  25. J. J. Bradstreet, S. Smith, M. Baral, and D. A. Rossignol, “Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder,” Alternative Medicine Review, vol. 15, no. 1, pp. 15–32, 2010. View at Google Scholar · View at Scopus
  26. M. R. Herbert, “Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders,” Current Opinion in Neurology, vol. 23, no. 2, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Gatto and K. Broadie, “Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models,” Frontline Synaptic Neurosciences, vol. 7, pp. 2–4, 2010. View at Publisher · View at Google Scholar
  28. C. Johnson and S. Meyers, “Council on children with disabilities, identification and evaluation of children with autism spectrum disorders,” Pediatrics, vol. 120, no. 5, pp. 1183–1215, 2007. View at Google Scholar
  29. U. Frith and C. Frith, “The social brain: allowing humans to boldly go where no other species has been,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1537, pp. 165–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Brothers, B. Ring, and A. Kling, “Response of neurons in the macaque amygdala to complex social stimuli,” Behavioural Brain Research, vol. 41, no. 3, pp. 199–213, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. K. A. Pelphrey, S. Shultz, C. M. Hudac, and B. C. Vander Wyk, “Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 52, no. 6, pp. 631–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Allison, A. Puce, and G. McCarthy, “Social perception from visual cues: role of the STS region,” Trends in Cognitive Sciences, vol. 4, no. 7, pp. 267–278, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zilbovicius, N. Boddaert, P. Belin et al., “Temporal lobe dysfunction in childhood autism: a PET study,” American Journal of Psychiatry, vol. 157, no. 12, pp. 1988–1993, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Gotts, W. Simmons, L. Milbury, G. Wallace, R. Cox, and A. Martin, “Fractionation of social brain circuits in autism spectrum disorders,” Brain, vol. 135, pp. 2711–2725, 2012. View at Google Scholar
  35. T. Hashimoto, M. Sasaki, M. Fukumizu, S. Hanaoka, K. Sugai, and H. Matsuda, “Single-photon emission computed tomography of the brain in autism: effect of the developmental level,” Pediatric Neurology, vol. 23, no. 5, pp. 416–420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Connolly, M. Chez, E. M. Streif et al., “Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy,” Biological Psychiatry, vol. 59, no. 4, pp. 354–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Vojdani, T. O'Bryan, J. A. Green et al., “Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism,” Nutritional Neuroscience, vol. 7, no. 3, pp. 151–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. H. P. Cohly and A. Panja, “Immunological findings in autism,” International Review of Neurobiology, vol. 71, pp. 317–341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. L. Vargas, C. Nascimbene, C. Krishnan, A. W. Zimmerman, and C. A. Pardo, “Neuroglial activation and neuroinflammation in the brain of patients with autism,” Annals of Neurology, vol. 57, no. 1, pp. 67–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Ashwood, P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I. Pessah, and J. Van de Water, “Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome,” Brain, Behavior, and Immunity, vol. 25, no. 1, pp. 40–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Grove, E. Bruscia, and D. S. Krause, “Plasticity of bone marrow-derived stem cells,” Stem Cells, vol. 22, no. 4, pp. 487–500, 2004. View at Google Scholar · View at Scopus
  42. A. Nakano-Doi, T. Nakagomi, M. Fujikawa et al., “Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction,” Stem Cells, vol. 28, no. 7, pp. 1292–1302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Sykova, P. Hendelova, L. Urdzikova, P. Lensy, and A. Hejcl, “Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair,” Cell Molecular Neurobiology, vol. 26, no. 7-8, pp. 1113–1129, 2006. View at Google Scholar
  44. D. Siniscalo, J. Bradstreet, and N. Antonucci, “The promise of regenerative medicine and stem cell research for the treatment of autism,” Journal of Regenerative Medicine, vol. 1, p. 1, 2012. View at Google Scholar
  45. D. Siniscalco, A. Sapone, A. Cirillo, C. Giordano, S. Maione, and N. Antonucci, “Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future?” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 480289, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Pelacho, M. Mazo, J. J. Gavira, and F. Prósper, “Adult stem cells: from new cell sources to changes in methodology,” Journal of Cardiovascular Translational Research, vol. 4, no. 2, pp. 154–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Meng, F. Muntoni, and J. E. Morgan, “Stem cells to treat muscular dystrophies-where are we?” Neuromuscular Disorders, vol. 21, no. 1, pp. 4–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. L. E. Glover, N. Tajiri, N. L. Weinbren et al., “A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells,” Translational Stroke Research, vol. 3, no. 1, pp. 90–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Callera and C. M. T. P. De Melo, “Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site,” Stem Cells and Development, vol. 16, no. 3, pp. 461–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Callera and R. X. Do Nascimento, “Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study,” Experimental Hematology, vol. 34, no. 2, pp. 130–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. C. Theoharides, A. Angelidou, K. Alysandratos et al., “Mast cell activation and autism,” Biochimica et Biophysica Acta, vol. 1822, no. 1, pp. 34–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. T. C. Theoharides and B. Zhang, “Neuro-inflammation, blood-brain barrier, seizures and autism,” Journal of Neuroinflammation, vol. 8, p. 168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. C. J. Newschaffer, L. A. Croen, J. Daniels et al., “The epidemiology of autism spectrum disorders,” Annual Review of Public Health, vol. 28, pp. 235–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Anagnostou and M. J. Taylor, “Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here,” Molecular Autism, vol. 2, no. 1, p. 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. S. Verhoeven, P. D. Cock, L. Lagae, and S. Sunaert, “Neuroimaging of autism,” Neuroradiology, vol. 52, no. 1, pp. 3–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Schifter, J. M. Hoffman, H. P. Hatten Jr., M. W. Hanson, R. E. Coleman, and G. R. DeLong, “Neuroimaging in infantile autism,” Journal of Child Neurology, vol. 9, no. 2, pp. 155–161, 1994. View at Google Scholar · View at Scopus
  57. M. Zilbovicius, I. Meresse, and N. Boddaert, “Autism: neuroimaging,” Revista Brasileira de Psiquiatria, vol. 28, supplement 1, pp. S21–S28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. D. C. Chugani, “Neuroimaging and neurochemistry of autism,” Pediatric Clinics of North America, vol. 59, no. 1, pp. 63–73, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Galuska, S. Szakáll Jr., M. Emri et al., “PET and SPECT scans in autistic children,” Orvosi hetilap, vol. 143, no. 21, supplement 3, pp. 1302–1304, 2002. View at Google Scholar · View at Scopus
  60. J. Case-Smith and M. Arbesman, “Evidence-based review of interventions for autism used in or of relevance to occupational therapy,” American Journal of Occupational Therapy, vol. 62, no. 4, pp. 416–429, 2008. View at Google Scholar · View at Scopus