Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 859643, 7 pages
http://dx.doi.org/10.1155/2013/859643
Research Article

Coculture with Late, but Not Early, Human Endothelial Progenitor Cells Up Regulates IL-1β Expression in THP-1 Monocytic Cells in a Paracrine Manner

Division of Cardiology, Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Room 7084 Bond Wing, 30 Bond Street, Toronto, ON, Canada M5B 1W8

Received 9 July 2013; Revised 7 November 2013; Accepted 22 November 2013

Academic Editor: Mark D. Kirk

Copyright © 2013 Qiuwang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Peichev, A. J. Naiyer, D. Pereira et al., “Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors,” Blood, vol. 95, no. 3, pp. 952–958, 2000. View at Google Scholar · View at Scopus
  3. U. M. Gehling, S. Ergün, U. Schumacher et al., “In vitro differentiation of endothelial cells from AC133-positive progenitor cells,” Blood, vol. 95, no. 10, pp. 3106–3112, 2000. View at Google Scholar · View at Scopus
  4. Q. Shi, S. Rafii, M. H. Wu et al., “Evidence for circulating bone marrow-derived endothelial cells,” Blood, vol. 92, no. 2, pp. 362–367, 1998. View at Google Scholar · View at Scopus
  5. T. Takahashi, C. Kalka, H. Masuda et al., “Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization,” Nature Medicine, vol. 5, no. 4, pp. 434–438, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Urbich and S. Dimmeler, “Endothelial progenitor cells: characterization and role in vascular biology,” Circulation Research, vol. 95, no. 4, pp. 343–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Janssens, C. Dubois, J. Bogaert et al., “Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial,” The Lancet, vol. 367, no. 9505, pp. 113–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Assmus, J. Honold, V. Schächinger et al., “Transcoronary transplantation of progenitor cells after myocardial infarction,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1222–1232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Schächinger, S. Erbs, A. Elsässer et al., “Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction,” The New England Journal of Medicine, vol. 355, pp. 1210–1221, 2006. View at Publisher · View at Google Scholar
  10. L. Herbots, J. D'hooge, E. Eroglu et al., “Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study,” European Heart Journal, vol. 30, no. 6, pp. 662–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. R. Ward, K. A. Thompson, K. Isaac et al., “Nitric oxide synthase gene transfer restores activity of circulating angiogenic cells from patients with coronary artery disease,” Molecular Therapy, vol. 19, no. 7, pp. 1323–1330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Hur, C. H. Yoon, H. S. Kim et al., “Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, pp. 288–293, 2004. View at Publisher · View at Google Scholar
  13. D. P. Sieveking, A. Buckle, D. S. Celermajer, and M. K. C. Ng, “Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay,” Journal of the American College of Cardiology, vol. 51, no. 6, pp. 660–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. de Falco, D. Porcelli, A. R. Torella et al., “SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells,” Blood, vol. 104, no. 12, pp. 3472–3482, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Chavakis, A. Aicher, C. Heeschen et al., “Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells,” Journal of Experimental Medicine, vol. 201, no. 1, pp. 63–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Sbaa, J. Dewever, P. Martinive et al., “Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis,” Circulation Research, vol. 98, no. 9, pp. 1219–1227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hristov, W. Erl, and P. C. Weber, “Endothelial progenitor cells: mobilization, differentiation, and homing,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1185–1189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. F. I. Bellisarii, S. Gallina, and R. de Caterina, “Tumor necrosis factor-α and cardiovascular diseases,” Italian Heart Journal, vol. 2, no. 6, pp. 408–417, 2001. View at Google Scholar · View at Scopus
  19. H. K. Saini, Y.-J. Xu, M. Zhang, P. P. Liu, L. A. Kirshenbaum, and N. S. Dhalla, “Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart,” Experimental and Clinical Cardiology, vol. 10, no. 4, pp. 213–222, 2005. View at Google Scholar · View at Scopus
  20. Q. Zhang, I. Kandic, and M. J. Kutryk, “Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease,” Biochemical and Biophysical Research Communications, vol. 405, no. 1, pp. 42–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Dimmeler, A. Aicher, M. Vasa et al., “HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway,” The Journal of Clinical Investigation, vol. 108, no. 3, pp. 391–397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Walzog, P. Weinmann, F. Jeblonski, K. Scharffetter-Kochanek, K. Bommert, and P. Gaehtgens, “A role for β2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response,” The FASEB Journal, vol. 13, no. 13, pp. 1855–1865, 1999. View at Google Scholar · View at Scopus
  23. A. Yamada, A. Hara, M. Inoue, S. Kamizono, T. Higuchi, and K. Itoh, “β2-integrin-mediated signal up-regulates counterreceptor ICAM-1 expression on human monocytic cell line THP-1 through tyrosine phosphorylation,” Cellular Immunology, vol. 178, no. 1, pp. 9–16, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Al-Numani, M. Segura, M. Doré, and M. Gottschalk, “Up-regulation of ICAM-1, CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes stimulated by Streptococcus suis serotype 2,” Clinical and Experimental Immunology, vol. 133, no. 1, pp. 67–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Dinarello, “Biologic basis for interleukin-1 in disease,” Blood, vol. 87, no. 6, pp. 2095–2147, 1996. View at Google Scholar · View at Scopus
  26. E. Voronov, D. S. Shouval, Y. Krelin et al., “IL-1 is required for tumor invasiveness and angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2645–2650, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Rosell, K. Arai, J. Lok et al., “Interleukin-1β augments angiogenic responses of murine endothelial progenitor cells in vitro,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 5, pp. 933–943, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Yang, X.-G. Guo, C.-Q. Du et al., “Interleukin-1 beta increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway,” Inflammation, vol. 35, no. 4, pp. 1242–1250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Amano, M. Okigaki, Y. Adachi et al., “Mechanism for IL-1β-mediated neovascularization unmasked by IL-1β knock-out mice,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 4, pp. 469–480, 2004. View at Publisher · View at Google Scholar · View at Scopus