Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013 (2013), Article ID 892065, 9 pages
http://dx.doi.org/10.1155/2013/892065
Research Article

Hepatocyte Growth Factor-Loaded Biomaterials for Mesenchymal Stem Cell Recruitment

1Institute of Pathology, Aachen University Hospital, RWTH Aachen University, 52074 Aachen, Germany
2Biointerface Group, Helmholtz Institute of Biomedical Engineering, Biointerface Group, RWTH Aachen University, 52074 Aachen, Germany
3Department of Orthopaedic Surgery, Aachen University Hospital, RWTH Aachen, 52074 Aachen, Germany

Received 14 March 2013; Revised 2 May 2013; Accepted 7 May 2013

Academic Editor: Weian Zhao

Copyright © 2013 Julia van de Kamp et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Jackson, L. J. Nesti, and R. S. Tuan, “Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells,” Stem Cells Translational Medicine, vol. 1, no. 1, pp. 44–50, 2012. View at Publisher · View at Google Scholar
  2. A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968. View at Google Scholar · View at Scopus
  3. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Sorrell and A. I. Caplan, “Topical delivery of mesenchymal stem cells and their function in wounds,” Stem Cell Research & Therapy, vol. 1, no. 4, p. 30, 2012. View at Google Scholar
  6. L. Chen, E. E. Tredget, P. Y. G. Wu, and Y. Wu, “Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing,” PLoS One, vol. 3, no. 4, article e1886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Li, Y. Zhang, Y. Li et al., “Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure,” Transplant International, vol. 21, no. 12, pp. 1181–1189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Neuss, E. Becher, M. Wöltje, L. Tietze, and W. Jahnen-Dechent, “Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing,” Stem Cells, vol. 22, no. 3, pp. 405–414, 2004. View at Google Scholar · View at Scopus
  9. S. Vogel, T. Trapp, V. Börger et al., “Hepatocyte growth factor-mediated attraction of mesenchymal stem cells for apoptotic neuronal and cardiomyocytic cells,” Cellular and Molecular Life Sciences, vol. 67, no. 2, pp. 295–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. K. Schneider, J. Anraths, R. Kramann et al., “The role of biomaterials in the direction of mesenchymal stem cell properties and extracellular matrix remodelling in dermal tissue engineering,” Biomaterials, vol. 31, no. 31, pp. 7948–7959, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. G. Harding, H. L. Morris, and G. K. Patel, “Science, medicine, and the future: healing chronic wounds,” British Medical Journal, vol. 324, no. 7330, pp. 160–163, 2002. View at Google Scholar · View at Scopus
  12. S. Siedler and S. Schuller-Petrovic, “Allogenic keratinocytes suspended in human fibrin glue used for wound healing support in chronic leg ulcers,” Archives of Dermatology, vol. 136, no. 5, pp. 676–678, 2000. View at Google Scholar · View at Scopus
  13. H. M. Powell and S. T. Boyce, “EDC cross-linking improves skin substitute strength and stability,” Biomaterials, vol. 27, no. 34, pp. 5821–5827, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. Clark, J. M. Lanigan, P. DellaPelle, E. Manseau, H. F. Dvorak, and R. B. Colvin, “Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization,” Journal of Investigative Dermatology, vol. 79, no. 5, pp. 264–269, 1982. View at Google Scholar · View at Scopus
  15. W. Bensaïd, J. T. Triffitt, C. Blanchat, K. Oudina, L. Sedel, and H. Petite, “A biodegradable fibrin scaffold for mesenchymal stem cell transplantation,” Biomaterials, vol. 24, no. 14, pp. 2497–2502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Falanga, S. Iwamoto, M. Chartier et al., “Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds,” Tissue Engineering, vol. 13, no. 6, pp. 1299–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. P. Spicer and A. G. Mikos, “Fibrin glue as a drug delivery system,” Journal of Controlled Release, vol. 148, no. 1, pp. 49–55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Ferreira, W. Jahnen-Dechent, N. Labude et al., “Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support,” Biomaterials, vol. 33, no. 29, pp. 6987–6997, 2012. View at Publisher · View at Google Scholar
  19. G. Ksander and Y. Ogawa, “Collagen wound healing matrices and process for their production,” US patent no. 4,950,483, 1990.
  20. M. M. Thibault, C. D. Hoemann, and M. D. Buschmann, “Fibronectin, vitronectin, and collagen I induce chemotaxis and haptotaxis of human and rabbit mesenchymal stem cells in a standardized transmembrane assay,” Stem Cells and Development, vol. 16, no. 3, pp. 489–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Neuss, R. Stainforth, J. Salber et al., “Long-term survival and bipotent terminal differentiation of human mesenchymal stem cells (hMSC) in combination with a commercially available three-dimensional collagen scaffold,” Cell Transplantation, vol. 17, no. 8, pp. 977–986, 2008. View at Google Scholar · View at Scopus
  22. C. C. Liang, A. Y. Park, and J. L. Guan, “In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro,” Nature Protocols, vol. 2, no. 2, pp. 329–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Boyden, “The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes,” The Journal of Experimental Medicine, vol. 115, no. 3, pp. 453–466, 1962. View at Google Scholar · View at Scopus
  24. S. E. Haynesworth, J. Goshima, V. M. Goldberg, and A. I. Caplan, “Characterization of cells with osteogenic potential from human marrow,” Bone, vol. 13, no. 1, pp. 81–88, 1992. View at Google Scholar · View at Scopus
  25. E. M. Horwitz, K. le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Dominici, K. le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Neuss, R. K. M. Schneider, L. Tietze, R. Knüchel, and W. Jahnen-Dechent, “Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots,” Cells Tissues Organs, vol. 191, no. 1, pp. 36–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. M. Schneider, S. Neuss, R. Stainforth et al., “Three-dimensional epidermis-like growth of human mesenchymal stem cells on dermal equivalents: contribution to tissue organization by adaptation of myofibroblastic phenotype and function,” Differentiation, vol. 76, no. 2, pp. 156–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. van de Kamp, R. Kramann, J. Anraths et al., “Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro,” Differentiation, vol. 83, no. 3, pp. 138–147, 2012. View at Publisher · View at Google Scholar
  30. A. J. Singer and R. A. F. Clark, “Cutaneous wound healing,” The New England Journal of Medicine, vol. 341, no. 10, pp. 738–746, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. F. Clark and P. M. Henson, The Molecular and Cellular Biology of Wound Repair, Plenum Press, New York, NY, USA, 1988.
  32. I. K. Cohen, R. F. Diegelmann, and W. J. Lindblad, Wound Healing: Biochemical and Clinical Aspects, W. B. Saunders Company, Philadelphia, Pa, USA, 1992.
  33. C. C. Xu, R. W. Chan, D. G. Weinberger, G. Efune, and K. S. Pawlowski, “Controlled release of hepatocyte growth factor from a bovine acellular scaffold for vocal fold reconstruction,” Journal of Biomedical Materials Research Part A, vol. 93, no. 4, pp. 1335–1347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kanematsu, S. Yamamoto, M. Ozeki et al., “Collagenous matrices as release carriers of exogenous growth factors,” Biomaterials, vol. 25, no. 18, pp. 4513–4520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. L. H. Bigelow and J. A. Cardelli, “The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells,” Oncogene, vol. 25, no. 13, pp. 1922–1930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. K. P. Xu and F. S. X. Yu, “Cross talk between c-met and epidermal growth factor receptor during retinal pigment epithelial wound healing,” Investigative Ophthalmology and Visual Science, vol. 48, no. 5, pp. 2242–2248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Chmielowiec, M. Borowiak, M. Morkel et al., “c-Met is essential for wound healing in the skin,” Journal of Cell Biology, vol. 177, no. 1, pp. 151–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Cerny-Reiterer, V. Ghanim, G. Hoemann et al., “Identification of basophils as a major source of hepatocyte growth factor in chronic myeloid leukemia: a novel mechanism of BCR-ABL1-independent disease progression,” Neoplasia, vol. 14, no. 7, pp. 572–584, 2012. View at Google Scholar
  39. H. J. Nam, Y. Y. Park, G. Yoon, H. Cho, and J. H. Lee, “Co-treatment with hepatocyte growth factor and TGF-β1 enhances migration of HaCaT cells through NADPH oxidase-dependent ROS generation,” Experimental and Molecular Medicine, vol. 42, no. 4, pp. 270–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Zaritsky, S. Natan, E. Ben-Jacob, and I. Tsarfaty, “Emergence of HGF/SF-induced coordinated cellular motility,” PLoS One, vol. 7, no. 9, Article ID e44671, 2012. View at Google Scholar
  41. B. Zheng, C. Wang, L. He et al., “Neural differentiation of mesenchymal stem cells influences chemotactic responses to HGF,” Journal of Cellular Physiology, vol. 228, no. 1, pp. 149–162, 2013. View at Publisher · View at Google Scholar
  42. G. Forte, M. Minieri, P. Cossa et al., “Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation,” Stem Cells, vol. 24, no. 1, pp. 23–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Naito, T. Hayashi, M. Kuzuya, C. Funaki, K. Asai, and F. Kuzuya, “Effects of fibrinogen and fibrin on the migration of vascular smooth muscle cells in vitro,” Atherosclerosis, vol. 83, no. 1, pp. 9–14, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Qi and D. L. Kreutzer, “Fibrin activation of vascular endothelial cells: induction of IL-8 expression,” Journal of Immunology, vol. 155, no. 2, pp. 867–876, 1995. View at Google Scholar · View at Scopus
  45. R. A. F. Clark, “Fibrin and wound healing,” Annals of the New York Academy of Sciences, vol. 936, pp. 355–367, 2001. View at Google Scholar · View at Scopus
  46. G. Zhang, Q. Hu, E. A. Braunlin, L. J. Suggs, and J. Zhang, “Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix,” Tissue Engineering. Part A, vol. 14, no. 6, pp. 1025–1036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. G. R. Mundy, S. DeMartino, and D. W. Rowe, “Collagen and collagen-derived fragments are chemotactic for tumor cells,” Journal of Clinical Investigation, vol. 68, no. 4, pp. 1102–1105, 1981. View at Google Scholar · View at Scopus
  48. V. Bae-Jump, E. M. Segreti, D. Vandermolen, and S. Kauma, “Hepatocyte growth factor (HGF) induces invasion of endometrial carcinoma cell lines in vitro,” Gynecologic Oncology, vol. 73, no. 2, pp. 265–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. M. Bhargava, C. Hidaka, J. A. Hannafin, S. Doty, and R. F. Warren, “Effects of hepatocyte growth factor and platelet-derived growth factor on the repair of meniscal defects in vitro,” In Vitro Cellular and Developmental Biology. Animal, vol. 41, no. 8-9, pp. 305–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Albini, Y. Iwamoto, H. K. Kleinman et al., “A rapid in vitro assay for quantitating the invasive potential of tumor cells,” Cancer Research, vol. 47, no. 12, pp. 3239–3245, 1987. View at Google Scholar · View at Scopus
  51. L. A. Repesh, “A new in vitro assay for quantitating tumor cell invasion,” Invasion and Metastasis, vol. 9, no. 3, pp. 192–208, 1989. View at Google Scholar · View at Scopus
  52. D. Muir, L. Sukhu, J. Johnson, M. A. Lahorra, and B. L. Maria, “Quantitative methods for scoring cell migration and invasion in filter-based assays,” Analytical Biochemistry, vol. 215, no. 1, pp. 104–109, 1993. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Yamakawa, Y. Furuyama, and N. Oku, “Development of a simple cell invasion assay system,” Biological and Pharmaceutical Bulletin, vol. 23, no. 10, pp. 1264–1266, 2000. View at Google Scholar · View at Scopus
  54. A. Albini and D. M. Noonan, “The ‘chemoinvasion’ assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis,” Current Opinion in Cell Biology, vol. 22, no. 5, pp. 677–689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. V. P. Terranova, E. S. Hujanen, D. M. Loeb, G. R. Martin, L. Thornburg, and V. Glushko, “Use of a reconstituted basement membrane to measure cell invasiveness and select for highly invasive tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 2, pp. 465–469, 1986. View at Google Scholar · View at Scopus
  56. C. G. Bredin, Z. Liu, D. Hauzenberger, and J. Klominek, “Growth-factor-dependent migration of human lung-cancer cells,” International Journal of Cancer, vol. 82, no. 3, pp. 338–345, 1999. View at Google Scholar
  57. Y. Ozaki, M. Nishimura, K. Sekiya et al., “Comprehensive analysis of chemotactic factors for bone marrow mesenchymal stem cells,” Stem Cells and Development, vol. 16, no. 1, pp. 119–129, 2007. View at Publisher · View at Google Scholar · View at Scopus