Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 916837, 10 pages
http://dx.doi.org/10.1155/2013/916837
Review Article

Human Cardiospheres as a Source of Multipotent Stem and Progenitor Cells

1Molecular Cardiology Laboratory and Department of Cardiology, Fondazione Cardiocentro Ticino, Via Tesserete 48, 6900 Lugano, Switzerland
2Ultrastructural Pathology, “Victor Babeş” National Institute of Pathology, 99-101 Splainl Independentei, 050096 Bucharest 5, Romania
3Department of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV), Avenue du Bugnon, 1011 Lausanne, Switzerland

Received 20 December 2012; Accepted 19 April 2013

Academic Editor: Pranela Rameshwar

Copyright © 2013 Lucio Barile et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Cardiospheres (CSs) are self-assembling multicellular clusters from the cellular outgrowth from cardiac explants cultured in nonadhesive substrates. They contain a core of primitive, proliferating cells, and an outer layer of mesenchymal/stromal cells and differentiating cells that express cardiomyocyte proteins and connexin 43. Because CSs contain both primitive cells and committed progenitors for the three major cell types present in the heart, that is, cardiomyocytes, endothelial cells, and smooth muscle cells, and because they are derived from percutaneous endomyocardial biopsies, they represent an attractive cell source for cardiac regeneration. In preclinical studies, CS-derived cells (CDCs) delivered to infarcted hearts resulted in improved cardiac function. CDCs have been tested safely in an initial phase-1 clinical trial in patients after myocardial infarction. Whether or not CDCs are superior to purified populations, for example, c-kit+ cardiac stem cells, or to gene therapy approaches for cardiac regeneration remains to be evaluated.