Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 960958, 9 pages
http://dx.doi.org/10.1155/2013/960958
Research Article

Improved Method for Ex Ovo-Cultivation of Developing Chicken Embryos for Human Stem Cell Xenografts

1Molecular Neurobiology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany
2Cell Biology, University of Bielefeld, Universitätsstraße 25, 33501 Bielefeld, Germany

Received 20 November 2012; Accepted 4 February 2013

Academic Editor: Pranela Rameshwar

Copyright © 2013 Timo Schomann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo. 1951,” Developmental Dynamics, vol. 195, no. 4, pp. 231–272, 1992. View at Google Scholar · View at Scopus
  2. S. Krispin, E. Nitzan, Y. Kassem, and C. Kalcheim, “Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest,” Development, vol. 137, no. 4, pp. 585–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Hauser, D. Widera, F. Qunneis et al. et al., “Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate,” Stem Cells and Development, vol. 21, pp. 742–756, 2012. View at Google Scholar
  4. P. Soundararajan, G. B. Miles, L. L. Rubin, R. M. Brownstone, and V. F. Rafuse, “Motoneurons derived from embryonic stem cells express transcription factors and develop phenotypes characteristic of medial motor column neurons,” Journal of Neuroscience, vol. 26, no. 12, pp. 3256–3268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Y. Son, J. K. Ichida, B. J. Wainger et al., “Conversion of mouse and human fibroblasts into functional spinal motor neurons,” Cell Stem Cell, vol. 9, no. 3, pp. 205–218, 2011. View at Google Scholar
  6. R. Auerbach, L. Kubai, D. Knighton, and J. Folkman, “A simple procedure for the long term cultivation of chicken embryos,” Developmental Biology, vol. 41, no. 2, pp. 391–394, 1974. View at Google Scholar · View at Scopus
  7. A. M. Jakobson, R. Hahnenberger, and A. Magnusson, “A simple method for shell-less cultivation of chick embryos,” Pharmacology and Toxicology, vol. 64, no. 2, pp. 193–195, 1989. View at Google Scholar · View at Scopus
  8. S. Hamamichi and H. Nishigori, “Establishment of a chick embryo shell-less culture system and its use to observe change in behavior caused by nicotine and substances from cigarette smoke,” Toxicology Letters, vol. 119, no. 2, pp. 95–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Datar and R. R. Bhonde, “Shell-less chick embryo culture as an alternative in vitro model to investigate glucose-induced malformations in mammalian embryos,” The Review of Diabetic Studies, vol. 2, pp. 221–227, 2005. View at Google Scholar
  10. H. C. Yalcin, A. Shekhar, A. A. Rane, and J. T. Butcher, “An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications,” Journal of Visualized Experiments, vol. 44, article e2154, 2010. View at Publisher · View at Google Scholar
  11. R. Bellairs and M. Osmond, The Atlas of Chick Development, Elsevier, Boston, Mass, USA, 2005.
  12. G. T. Filipski and M. V. H. Wilson, “Sudan black B as a nerve stain for whole cleared fishes,” Copeia, vol. 1984, pp. 204–208, 1984. View at Google Scholar
  13. K. C. Nishikawa, “Staining amphibian peripheral-nerves with sudan black B: progressive versus regressive methods,” Copeia, vol. 1987, pp. 489–491, 1987. View at Google Scholar
  14. J. J. Meyers, A. Herrel, and K. C. Nishikawa, “Comparative study of the innervation patterns of the hyobranchial musculature in three iguanian lizards: sceloporus undulatus, Pseudotrapelus sinaitus, and Chamaeleo jacksonii,” Anatomical Record, vol. 267, no. 2, pp. 177–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Korn and K. S. Cramer, “Windowing chicken eggs for developmental studies,” Journal of Visualized Experiments, no. 5, article e306, 2007. View at Publisher · View at Google Scholar
  16. P. C. Brooks, A. M. Montgomery, and D. A. Cheresh, “Use of the 10-day-old chick embryo model for studying angiogenesis,” Methods in Molecular Biology, vol. 129, pp. 257–269, 1999. View at Google Scholar · View at Scopus
  17. S. A. Oberlender and R. S. Tuan, “Application of functional blocking antibodies. N-cadherin and chick embryonic limb development,” Methods in Molecular Biology, vol. 137, pp. 37–42, 2000. View at Google Scholar · View at Scopus
  18. H. S. Leong, A. F. Chambers, and J. D. Lewis, “Assessing cancer cell migration and metastatic growth in vivo in the chick embryo using fluorescence intravital imaging,” Methods in Molecular Biology, vol. 872, pp. 1–14, 2012. View at Google Scholar
  19. D. S. Dohle, S. D. Pasa, S. Gustmann et al., “Chick ex ovo culture and ex ovo CAM assay: how it really works,” Journal of Visualized Experiments, article e1620, 2009. View at Publisher · View at Google Scholar
  20. A. Minovi, M. Witt, A. Prescher et al., “Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium,” Histology and Histopathology, vol. 25, no. 2, pp. 177–187, 2010. View at Google Scholar · View at Scopus