Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2014 (2014), Article ID 194318, 13 pages
http://dx.doi.org/10.1155/2014/194318
Review Article

Current Perspectives in Mesenchymal Stem Cell Therapies for Osteoarthritis

1Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand
2Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama IV Road, Pathumwan, Bangkok 10330, Thailand

Received 20 August 2014; Accepted 19 November 2014; Published 8 December 2014

Academic Editor: Franca Fagioli

Copyright © 2014 Baldur Kristjánsson and Sittisak Honsawek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Findlay, “If good things come from above, do bad things come from below?” Arthritis Research and Therapy, vol. 12, no. 3, article 119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Annals of the New York Academy of Sciences, vol. 1192, pp. 230–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. J. E. de Lange-Brokaar, A. Ioan-Facsinay, G. J. V. M. van Osch et al., “Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review,” Osteoarthritis and Cartilage, vol. 20, no. 12, pp. 1484–1499, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Haq, F. Davatchi, S. Dahaghin et al., “Development of a questionnaire for identification of the risk factors for osteoarthritis of the knees in developing countries. A pilot study in Iran and Bangladesh. An ILAR-COPCORD phase III study,” International Journal of Rheumatic Diseases, vol. 13, no. 3, pp. 203–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Dahaghin, S. A. Tehrani-Banihashemi, S. T. Faezi, A. R. Jamshidi, and F. Davatchi, “Squatting, sitting on the floor, or cycling: are life-long daily activities risk factors for clinical knee osteoarthritis? Stage III results of a community-based study,” Arthritis Care and Research, vol. 61, no. 10, pp. 1337–1342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Buckwalter and J. A. Martin, “Osteoarthritis,” Advanced Drug Delivery Reviews, vol. 58, no. 2, pp. 150–167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Gore, K.-S. Tai, A. Sadosky, D. Leslie, and B. R. Stacey, “Clinical comorbidities, treatment patterns, and direct medical costs of patients with osteoarthritis in usual care: a retrospective claims database analysis,” Journal of Medical Economics, vol. 14, no. 4, pp. 497–507, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Hawker, S. Mian, K. Bednis, and I. Stanaitis, “Osteoarthritis year 2010 in review: non-pharmacologic therapy,” Osteoarthritis and Cartilage, vol. 19, no. 4, pp. 366–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. F. Pisters, C. Veenhof, F. G. Schellevis, D. H. De Bakker, and J. Dekker, “Long-term effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: a randomized controlled trial comparing two different physical therapy interventions,” Osteoarthritis and Cartilage, vol. 18, no. 8, pp. 1019–1026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Buckwalter, C. Saltzman, and T. Brown, “The impact of osteoarthritis: implications for research,” Clinical Orthopaedics and Related Research, no. 427, pp. S6–S15, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. H. S. Vasiliadis and J. Wasiak, “Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee,” Cochrane Database of Systematic Reviews, no. 10, Article ID CD003323, 2010. View at Google Scholar · View at Scopus
  12. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” The New England Journal of Medicine, vol. 331, no. 14, pp. 889–895, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Friedenstein, I. I. Piatetzky-Shapiro, and K. V. Petrakova, “Osteogenesis in transplants of bone marrow cells,” Journal of Embryology and Experimental Morphology, vol. 16, no. 3, pp. 381–390, 1966. View at Google Scholar · View at Scopus
  14. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Petersen, W. C. Bowen, K. D. Patrene et al., “Bone marrow as a potential source of hepatic oval cells,” Science, vol. 284, no. 5417, pp. 1168–1170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. G. C. Kopen, D. J. Prockop, and D. G. Phinney, “Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10711–10716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Campagnoli, I. A. G. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk, “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, vol. 98, no. 8, pp. 2396–2402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Karp and G. S. L. Teo, “Mesenchymal stem cell homing: the devil is in the details,” Cell Stem Cell, vol. 4, no. 3, pp. 206–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Doorn, G. Moll, K. Le Blanc, C. van Blitterswijk, and J. de Boer, “Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements,” Tissue Engineering Part B: Reviews, vol. 18, no. 2, pp. 101–115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. L. da Silva Meirelles, A. M. Fontes, D. T. Covas, and A. I. Caplan, “Mechanisms involved in the therapeutic properties of mesenchymal stem cells,” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 419–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. B. O. G. Salgado, R. L. G. Reis, N. J. C. Sousa, and J. M. Gimble, “Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine,” Current Stem Cell Research and Therapy, vol. 5, no. 2, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Abumaree, M. Al Jumah, R. A. Pace, and B. Kalionis, “Immunosuppressive properties of mesenchymal stem cells,” Stem Cell Reviews and Reports, vol. 8, no. 2, pp. 375–392, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. B. A. Bunnell, B. T. Estes, F. Guilak, and J. M. Gimble, “Differentiation of adipose stem cells,” Methods in Molecular Biology, vol. 456, pp. 155–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. L. Troyer and M. L. Weiss, “Wharton's Jelly-derived cells are a primitive stromal cell population,” Stem Cells, vol. 26, no. 3, pp. 591–599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. P. J. Simmons and B. Torok-Storb, “Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1,” Blood, vol. 78, no. 1, pp. 55–62, 1991. View at Google Scholar · View at Scopus
  28. L. da Silva Meirelles and N. B. Nardi, “Methodology, biology and clinical applications of mesenchymal stem cells,” Frontiers in Bioscience, vol. 14, no. 11, pp. 4281–4298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Mehrkens, N. Di Maggio, S. Gueven et al., “Non-adherent mesenchymal progenitors from adipose tissue stromal vascular fraction,” Tissue Engineering—Part A, vol. 20, no. 5-6, pp. 1081–1088, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. L. Zhang, J. Tong, R. N. Lu, A. M. Scutt, D. Goltzman, and D. S. Miao, “Therapeutic potential of non-adherent BM-derived mesenchymal stem cells in tissue regeneration,” Bone Marrow Transplantation, vol. 43, no. 1, pp. 69–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Farini, C. Sitzia, S. Erratico, M. Meregalli, and Y. Torrente, “Clinical applications of mesenchymal stem cells in chronic diseases,” Stem Cells International, vol. 2014, Article ID 306573, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. H. J. Paek, C. Kim, and S. K. Williams, “Adipose stem cell-based regenerative medicine for reversal of diabetic hyperglycemia,” World Journal of Diabetes, vol. 5, no. 3, pp. 235–243, 2014. View at Google Scholar
  34. T. K. Ng, V. R. Fortino, D. Pelaez, and H. S. Cheung, “Progress of mesenchymal stem cell therapy for neural and retinal diseases,” World Journal of Stem Cells, vol. 6, no. 2, pp. 111–119, 2014. View at Google Scholar
  35. M. E. Bernardo, N. Zaffaroni, F. Novara et al., “Human bone marrow-derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms,” Cancer Research, vol. 67, no. 19, pp. 9142–9149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. L. He, Y. Zheng, Y. Wan, and J. Song, “A shorter telomere is the key factor in preventing cultured human mesenchymal stem cells from senescence escape,” Histochemistry and Cell Biology, vol. 142, no. 3, pp. 257–267, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Suzuki, R. Sun, M. Origuch et al., “Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization,” Molecular Medicine, vol. 17, no. 7-8, pp. 579–587, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. De Bari, F. Dell'Accio, P. Tylzanowski, and F. P. Luyten, “Multipotent mesenchymal stem cells from adult human synovial membrane,” Arthritis & Rheumatism, vol. 44, no. 8, pp. 1928–1942, 2001. View at Google Scholar
  39. Y. Segawa, T. Muneta, H. Makino et al., “Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles,” Journal of Orthopaedic Research, vol. 27, no. 4, pp. 435–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. F. Steinert, M. Kunz, P. Prager et al., “Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells,” Tissue Engineering—Part A, vol. 17, no. 9-10, pp. 1375–1388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. W. S. Khan, A. B. Adesida, S. R. Tew, U. G. Longo, and T. E. Hardingham, “Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies,” Cell Proliferation, vol. 45, no. 2, pp. 111–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Williams, I. M. Khan, K. Richardson et al., “Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage,” PLoS ONE, vol. 5, no. 10, Article ID e13246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Karystinou, F. Dell'Accio, T. B. A. Kurth et al., “Distinct mesenchymal progenitor cell subsets in the adult human synovium,” Rheumatology, vol. 48, no. 9, pp. 1057–1064, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Horie, M. D. Driscoll, H. W. Sampson et al., “Implantation of allogenic synovial stem cells promotes meniscal regeneration in a rabbit meniscal defect model,” Journal of Bone and Joint Surgery A, vol. 94, no. 8, pp. 701–712, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Barry and M. Murphy, “Mesenchymal stem cells in joint disease and repair,” Nature Reviews Rheumatology, vol. 9, no. 10, pp. 584–594, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. C. R. Flannery, C. E. Hughes, B. L. Schumacher et al., “Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism,” Biochemical and Biophysical Research Communications, vol. 254, no. 3, pp. 535–541, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Rosen and C. T. Jordan, “The increasing complexity of the cancer stem cell paradigm,” Science, vol. 324, no. 5935, pp. 1670–1673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. J.-H. Chen, C. Y. Y. Yip, E. D. Sone, and C. A. Simmons, “Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential,” The American Journal of Pathology, vol. 174, no. 3, pp. 1109–1119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Bock, J. Höftmann, K. Theophile et al., “Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines,” The American Journal of Pathology, vol. 172, no. 4, pp. 951–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. H. Lee, C. H. Sonn, S. B. Han, Y. Oh, K. M. Lee, and S. H. Lee, “Synovial fluid CD34- CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis,” Osteoarthritis and Cartilage, vol. 20, no. 2, pp. 106–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. J. M. Murphy, K. Dixon, S. Beck, D. Fabian, A. Feldman, and F. Barry, “Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis,” Arthritis & Rheumatism, vol. 46, no. 3, pp. 704–713, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. K.-H. Chua, W. K. Z. W. Safwani, A. A. Hamid, S. K. Shuhup, N. H. M. Haflah, and N. H. M. Yahaya, “Retropatellar fat pad-derived stem cells from older osteoarthritic patients have lesser differentiation capacity and expression of stemness genes,” Cytotherapy, vol. 16, no. 5, pp. 599–611, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. C. J. Centeno, J. R. Schultz, M. Cheever, B. Robinson, M. Freeman, and W. Marasco, “Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique,” Current Stem Cell Research and Therapy, vol. 5, no. 1, pp. 81–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Scharstuhl, B. Schewe, K. Benz, C. Gaissmaier, H.-J. Büuhring, and R. Stoop, “Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology,” Stem Cells, vol. 25, no. 12, pp. 3244–3251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Gobbi, D. Lad, and G. Karnatzikos, “The effects of repeated intra-articular PRP injections on clinical outcomes of early osteoarthritis of the knee,” Knee Surgery, Sports Traumatology, Arthroscopy, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Wakitani, T. Goto, S. J. Pineda et al., “Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage,” Journal of Bone and Joint Surgery, vol. 76, no. 4, pp. 579–592, 1994. View at Google Scholar · View at Scopus
  57. L. Aust, B. Devlin, S. J. Foster et al., “Yield of human adipose-derived adult stem cells from liposuction aspirates,” Cytotherapy, vol. 6, no. 1, pp. 7–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. S. R. Burger, “Current regulatory issues in cell and tissue therapy,” Cytotherapy, vol. 5, no. 4, pp. 289–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Fekete, M. T. Rojewski, D. Fürst et al., “GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC,” PLoS ONE, vol. 7, no. 8, Article ID e43255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Wakitani, T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura, and S. Horibe, “Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports,” Cell Transplantation, vol. 13, no. 5, pp. 595–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata, and M. Yoneda, “Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees,” Osteoarthritis and Cartilage, vol. 10, no. 3, pp. 199–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Kuroda, K. Ishida, T. Matsumoto et al., “Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells,” Osteoarthritis and Cartilage, vol. 15, no. 2, pp. 226–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Wakitani, M. Nawata, K. Tensho, T. Okabe, H. Machida, and H. Ohgushi, “Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 1, pp. 74–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Wakitani, T. Okabe, S. Horibe et al., “Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 2, pp. 146–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Kaszkin-Bettag, “Is autologous chondrocyte implantation (ACI) an adequate treatment option for repair of cartilage defects in paediatric patients?” Drug Discovery Today, vol. 18, no. 15-16, pp. 740–747, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Nejadnik, J. H. Hui, E. P. F. Choong, and B.-C. Tai, “Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study,” The American Journal of Sports Medicine, vol. 38, no. 6, pp. 1110–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Buda, F. Vannini, M. Cavallo, B. Grigolo, A. Cenacchi, and S. Giannini, “Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells,” Journal of Bone and Joint Surgery—Series A, vol. 92, no. 2, pp. 2–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Gobbi, G. Karnatzikos, C. Scotti, V. Mahajan, L. Mazzucco, and B. Grigolo, “One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up,” Cartilage, vol. 2, no. 3, pp. 286–299, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Gobbi, G. Karnatzikos, and S. R. Sankineani, “One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee,” The American Journal of Sports Medicine, vol. 42, no. 3, pp. 648–657, 2014. View at Publisher · View at Google Scholar · View at Scopus
  70. C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman, and D. Karli, “Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells,” Pain Physician, vol. 11, no. 3, pp. 343–353, 2008. View at Google Scholar · View at Scopus
  71. C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman, and D. Karli, “Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells,” Medical Hypotheses, vol. 71, no. 6, pp. 900–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Davatchi, B. S. Abdollahi, M. Mohyeddin, F. Shahram, and B. Nikbin, “Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients,” International Journal of Rheumatic Diseases, vol. 14, no. 2, pp. 211–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Emadedin, N. Aghdami, L. Taghiyar et al., “Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis,” Archives of Iranian Medicine, vol. 15, no. 7, pp. 422–428, 2012. View at Google Scholar · View at Scopus
  74. L. Orozco, A. Munar, R. Soler et al., “Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study,” Transplantation, vol. 95, no. 12, pp. 1535–1541, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Goyal, S. Keyhani, E. H. Lee, and J. H. P. Hui, “Evidence-based status of microfracture technique: a systematic review of level I and II studies,” Arthroscopy, vol. 29, no. 9, pp. 1579–1588, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. K.-Y. Saw, A. Anz, C. Siew-Yoke Jee et al., “Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial,” Arthroscopy, vol. 29, no. 4, pp. 684–694, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Y. Saw, A. Anz, S. Merican et al., “Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology,” Arthroscopy, vol. 27, no. 4, pp. 493–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. K. L. Wong, K. B. L. Lee, B. C. Tai, P. Law, E. H. Lee, and J. H. P. Hui, “Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up,” Arthroscopy—Journal of Arthroscopic and Related Surgery, vol. 29, no. 12, pp. 2020–2028, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. Y.-G. Koh and Y.-J. Choi, “Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis,” Knee, vol. 19, no. 6, pp. 902–907, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. Y.-G. Koh, S.-B. Jo, O.-R. Kwon et al., “Mesenchymal stem cell injections improve symptoms of knee osteoarthritis,” Arthroscopy, vol. 29, no. 4, pp. 748–755, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. Y.-G. Koh, Y.-J. Choi, S.-K. Kwon, Y.-S. Kim, and J.-E. Yeo, “Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis,” Knee Surgery, Sports Traumatology, Arthroscopy, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. C. H. Jo, Y. G. Lee, W. H. Shin et al., “Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial,” Stem Cells, vol. 32, no. 5, pp. 1254–1266, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. C. T. Vangsness Jr., J. Farr, J. Boyd, D. T. Dellaero, C. R. Mills, and M. LeRoux-Williams, “Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy,” The Journal of Bone and Joint Surgery A, vol. 96, no. 2, pp. 90–98, 2014. View at Publisher · View at Google Scholar · View at Scopus
  84. H. S. Varma, B. Dadarya, and A. Vidyarthi, “The new avenues in the management of osteo-arthritis of knee—stem cells,” Journal of the Indian Medical Association, vol. 108, no. 9, pp. 583–585, 2010. View at Google Scholar · View at Scopus
  85. R. A. Hauser and A. Orlofsky, “Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series,” Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, vol. 6, pp. 65–72, 2013. View at Publisher · View at Google Scholar · View at Scopus