Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016, Article ID 2142646, 12 pages
http://dx.doi.org/10.1155/2016/2142646
Research Article

Mesenchymal Stem Cells Derived from Human Exocrine Pancreas Spontaneously Express Pancreas Progenitor-Cell Markers in a Cell-Passage-Dependent Manner

1Laboratory of Stem Cell Biology and Cell Therapy, Asan Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
2Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

Received 4 March 2016; Accepted 21 July 2016

Academic Editor: Eva Mezey

Copyright © 2016 Song Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” The New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Y. Benhamou, J. Oberholzer, C. Toso et al., “Human islet transplantation network for the treatment of Type I diabetes: first data from the Swiss-French GRAGIL consortium (1999-2000),” Diabetologia, vol. 44, no. 7, pp. 859–864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. G. Toma, M. Akhavan, K. J. L. Fernandes et al., “Isolation of multipotent adult stem cells from the dermis of mammalian skin,” Nature Cell Biology, vol. 3, no. 9, pp. 778–784, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. D. C. Colter, I. Sekiya, and D. J. Prockop, “Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7841–7845, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Körbling and Z. Estrov, “Adult stem cells for tissue repair—a new therapeutic concept?” The New England Journal of Medicine, vol. 349, no. 6, pp. 570–582, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Ben Azouna, F. Jenhani, Z. Regaya et al., “Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum,” Stem Cell Research & Therapy, vol. 3, no. 1, article 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L.-L. Lu, Y.-J. Liu, S.-G. Yang et al., “Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials,” Haematologica, vol. 91, no. 8, pp. 1017–1028, 2006. View at Google Scholar · View at Scopus
  10. T. Tondreau, N. Meuleman, A. Delforge et al., “Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity,” Stem Cells, vol. 23, no. 8, pp. 1105–1112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Hu, L. Liao, Q. Wang et al., “Isolation and identification of mesenchymal stem cells from human fetal pancreas,” Journal of Laboratory and Clinical Medicine, vol. 141, no. 5, pp. 342–349, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Seeberger, J. M. Dufour, A. M. J. Shapiro, J. R. T. Lakey, R. V. Rajotte, and G. S. Korbutt, “Expansion of mesenchymal stem cells from human pancreatic ductal epithelium,” Laboratory Investigation, vol. 86, no. 2, pp. 141–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Baertschiger, D. Bosco, P. Morel et al., “Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development,” Pancreas, vol. 37, no. 1, pp. 75–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Woodbury, K. Reynolds, and I. B. Black, “Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis,” Journal of Neuroscience Research, vol. 69, no. 6, pp. 908–917, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Reed and S. E. Johnson, “Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types,” Journal of Cellular Physiology, vol. 215, no. 2, pp. 329–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. W. J. C. Rombouts and R. E. Ploemacher, “Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture,” Leukemia, vol. 17, no. 1, pp. 160–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Belema-Bedada, S. Uchida, A. Martire, S. Kostin, and T. Braun, “Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2,” Cell Stem Cell, vol. 2, no. 6, pp. 566–575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Wang, Z. Xu, W. Jiang, and A. Ma, “Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell,” International Journal of Cardiology, vol. 109, no. 1, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sasaki, R. Abe, Y. Fujita, S. Ando, D. Inokuma, and H. Shimizu, “Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type,” The Journal of Immunology, vol. 180, no. 4, pp. 2581–2587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Reppel, J. Schiavi, N. Charif et al., “Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering,” Stem Cell Research & Therapy, vol. 6, no. 1, article 260, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Neuhuber, B. Timothy Himes, J. S. Shumsky, G. Gallo, and I. Fischer, “Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations,” Brain Research, vol. 1035, no. 1, pp. 73–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Bartholomew, C. Sturgeon, M. Siatskas et al., “Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo,” Experimental Hematology, vol. 30, no. 1, pp. 42–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Timper, D. Seboek, M. Eberhardt et al., “Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 1135–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. L.-F. Wu, N.-N. Wang, Y.-S. Liu, and X. Wei, “Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells,” Tissue Engineering Part A, vol. 15, no. 10, pp. 2865–2873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Karnieli, Y. Izhar-Prato, S. Bulvik, and S. Efrat, “Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation,” STEM CELLS, vol. 25, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Li, L. Zhu, X. Qu et al., “Stepwise differentiation of human adipose-derived mesenchymal stem cells toward definitive endoderm and pancreatic progenitor cells by mimicking pancreatic development in vivo,” Stem Cells and Development, vol. 22, no. 10, pp. 1576–1587, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Lee, H. Youn, T. Chung et al., “In vivo bioluminescence imaging of transplanted mesenchymal stem cells as a potential source for pancreatic regeneration,” Molecular Imaging, vol. 13, no. 8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Cao, Z.-B. Han, H. Zhao, and Q. Liu, “Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice,” International Journal of Biochemistry and Cell Biology, vol. 53, pp. 372–379, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Ricordi, P. E. Lacy, and D. W. Scharp, “Automated islet isolation from human pancreas,” Diabetes, vol. 38, supplement 1, pp. 140–142, 1989. View at Google Scholar · View at Scopus
  31. H.-T. Lin, S.-H. Chiou, C.-L. Kao et al., “Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting,” World Journal of Gastroenterology, vol. 12, no. 28, pp. 4529–4535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Davani, L. Ikonomou, B. M. Raaka et al., “Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo,” STEM CELLS, vol. 25, no. 12, pp. 3215–3222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Moriscot, F. De Fraipont, M.-J. Richard et al., “Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro,” Stem Cells, vol. 23, no. 4, pp. 594–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Karnieli, Y. Izhar-Prato, S. Bulvik, and S. Efrat, “Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation,” Stem Cells, vol. 25, no. 11, pp. 2837–2844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Limbert, G. Pth, R. Ebert et al., “PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages,” Cytotherapy, vol. 13, no. 7, pp. 802–813, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Yatoh, R. Dodge, T. Akashi et al., “Differentiation of affinity-purified human pancreatic duct cells to β-cells,” Diabetes, vol. 56, no. 7, pp. 1802–1809, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Xu, K. S. Tsang, J. C. N. Chan et al., “The combined expression of Pdx1 and MafA with either Ngn3 or NeuroD improves the differentiation efficiency of mouse embryonic stem cells into insulin-producing cells,” Cell Transplantation, vol. 22, no. 1, pp. 147–158, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, and D. A. Melton, “In vivo reprogramming of adult pancreatic exocrine cells to β-cells,” Nature, vol. 455, no. 7213, pp. 627–632, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Cai, C. Yu, Y. Liu et al., “Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells,” Journal of Molecular Cell Biology, vol. 2, no. 1, pp. 50–60, 2010. View at Google Scholar
  40. M. P. Wescott, M. Rovira, M. Reichert et al., “Pancreatic ductal morphogenesis and the Pdx1 homeodomain transcription factor,” Molecular Biology of the Cell, vol. 20, no. 22, pp. 4838–4844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. A. D'Amour, A. G. Bang, S. Eliazer et al., “Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells,” Nature Biotechnology, vol. 24, no. 11, pp. 1392–1401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Gradwohl, A. Dierich, M. LeMeur, and F. Guillemot, “neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1607–1611, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Kataoka, S.-I. Han, S. Shioda, M. Hirai, M. Nishizawa, and H. Handa, “MafA is a glucose-regulated and pancreatic β-cell-specific transcriptional activator for the insulin gene,” The Journal of Biological Chemistry, vol. 277, no. 51, pp. 49903–49910, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Akinci, A. Banga, L. V. Greder, J. R. Dutton, and J. M. W. Slack, “Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3  and  MafA,” Biochemical Journal, vol. 442, no. 3, pp. 539–550, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. R. E. Jennings, A. A. Berry, J. P. Strutt, D. T. Gerrard, and N. A. Hanley, “Human pancreas development,” Development, vol. 142, no. 18, pp. 3126–3137, 2015. View at Publisher · View at Google Scholar · View at Scopus
  46. L. C. Murtaugh, “Pancreas and beta-cell development: from the actual to the possible,” Development, vol. 134, no. 3, pp. 427–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. F.-X. Jiang, M. Mehta, and G. Morahan, “Quantification of insulin gene expression during development of pancreatic islet cells,” Pancreas, vol. 39, no. 2, pp. 201–208, 2010. View at Publisher · View at Google Scholar · View at Scopus