Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016, Article ID 4736159, 6 pages
http://dx.doi.org/10.1155/2016/4736159
Research Article

Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

1Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
2Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
3German Center for Neurodegenerative Diseases (DZNE), Research Site Dresden, 01307 Dresden, Germany
4Hans Schöler Stem Cell Research Center (HSSCRC), Max Planck Partner Group-MBL, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
5Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
6Department of Neurology, University of Rostock, Rostock, Germany

Received 5 November 2015; Revised 29 December 2015; Accepted 6 January 2016

Academic Editor: Yupo Ma

Copyright © 2016 Andreas Hermann et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Maherali, R. Sridharan, W. Xie et al., “Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution,” Cell Stem Cell, vol. 1, no. 1, pp. 55–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Wernig, J.-P. Zhao, J. Pruszak et al., “Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 15, pp. 5856–5861, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Hanna, M. Wernig, S. Markoulaki et al., “Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin,” Science, vol. 318, no. 5858, pp. 1920–1923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Nelson, A. Martinez-Fernandez, S. Yamada, C. Perez-Terzic, Y. Ikeda, and A. Terzic, “Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells,” Circulation, vol. 120, no. 5, pp. 408–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Alipio, W. Liao, E. J. Roemer et al., “Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 30, pp. 13426–13431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Hochedlinger, Y. Yamada, C. Beard, and R. Jaenisch, “Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues,” Cell, vol. 121, no. 3, pp. 465–477, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. W. Foster, Z. Liu, C. D. Nail et al., “Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia,” Oncogene, vol. 24, no. 9, pp. 1491–1500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Kopp, B. D. Ormsbee, M. Desler, and A. Rizzino, “Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells,” Stem Cells, vol. 26, no. 4, pp. 903–911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Niwa, J.-I. Miyazaki, and A. G. Smith, “Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells,” Nature Genetics, vol. 24, no. 4, pp. 372–376, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Stadtfeld, M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger, “Induced pluripotent stem cells generated without viral integration,” Science, vol. 322, no. 5903, pp. 945–949, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Junying, H. Kejin, S.-O. Kim et al., “Human induced pluripotent stem cells free of vector and transgene sequences,” Science, vol. 324, no. 5928, pp. 797–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen, “Virus-free induction of pluripotency and subsequent excision of reprogramming factors,” Nature, vol. 458, no. 7239, pp. 771–775, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, and S. Yamanaka, “Generation of mouse induced pluripotent stem cells without viral vectors,” Science, vol. 322, no. 5903, pp. 949–953, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Soldner, D. Hockemeyer, C. Beard et al., “Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors,” Cell, vol. 136, no. 5, pp. 964–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Kim, C.-H. Kim, J.-I. Moon et al., “Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins,” Cell Stem Cell, vol. 4, no. 6, pp. 472–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Nakagawa, M. Koyanagi, K. Tanabe et al., “Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts,” Nature Biotechnology, vol. 26, no. 1, pp. 101–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Wernig, A. Meissner, J. P. Cassady, and R. Jaenisch, “c-Myc is dispensable for direct reprogramming of mouse fibroblasts,” Cell Stem Cell, vol. 2, no. 1, pp. 10–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Shi, J. T. Do, C. Desponts, H. S. Hahm, H. R. Schöler, and S. Ding, “A combined chemical and genetic approach for the generation of induced pluripotent stem cells,” Cell Stem Cell, vol. 2, no. 6, pp. 525–528, 2008. View at Publisher · View at Google Scholar
  27. S. Eminli, J. Utikal, K. Arnold, R. Jaenisch, and K. Hochedlinger, “Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression,” STEM CELLS, vol. 26, no. 10, pp. 2467–2474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Kim, H. Zaehres, G. Wu et al., “Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors,” Nature, vol. 454, no. 7204, pp. 646–650, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Huangfu, K. Osafune, R. Maehr et al., “Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2,” Nature Biotechnology, vol. 26, no. 11, pp. 1269–1275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. E. Hester, S. Song, C. J. Miranda, A. Eagle, P. H. Schwartz, and B. K. Kaspar, “Two factor reprogramming of human neural stem cells into pluripotency,” PLoS ONE, vol. 4, no. 9, Article ID e7044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. B. Kim, V. Sebastiano, G. Wu et al., “Oct4-induced pluripotency in adult neural stem cells,” Cell, vol. 136, no. 3, pp. 411–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. B. Kim, B. Greber, M. J. Arazo-Bravo et al., “Direct reprogramming of human neural stem cells by OCT4,” Nature, vol. 461, no. 7264, pp. 649–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Zhu, W. Li, H. Zhou et al., “Reprogramming of human primary somatic cells by OCT4 and chemical compounds,” Cell Stem Cell, vol. 7, no. 6, pp. 651–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Löhle, A. Hermann, H. Glaß et al., “Differentiation efficiency of induced pluripotent stem cells depends on the number of reprogramming factors,” STEM CELLS, vol. 30, no. 3, pp. 570–579, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Reinhardt, B. Schmid, L. F. Burbulla et al., “Genetic correction of a lrrk2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression,” Cell Stem Cell, vol. 12, no. 3, pp. 354–367, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Japtok, X. Lojewski, M. Naumann et al., “Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging,” Neurobiology of Disease, vol. 82, pp. 420–429, 2015. View at Publisher · View at Google Scholar
  37. H. Kawasaki, K. Mizuseki, S. Nishikawa et al., “Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity,” Neuron, vol. 28, no. 1, pp. 31–40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Wächter, A. Storch, and A. Hermann, “Human TDP-43 and FUS selectively affect motor neuron maturation and survival in a murine cell model of ALS by non-cell-autonomous mechanisms,” Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, vol. 16, no. 7-8, pp. 431–441, 2015. View at Publisher · View at Google Scholar
  39. A. Hermann, S. Liebau, R. Gastl et al., “Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols,” Journal of Neuroscience Research, vol. 83, no. 8, pp. 1502–1514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Milosevic, A. Storch, and J. Schwarz, “Cryopreservation does not affect proliferation and multipotency of murine neural precursor cells,” STEM CELLS, vol. 23, no. 5, pp. 681–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Sabolek, B. Baumann, M. Heinrich et al., “Initiation of dopaminergic differentiation of Nurr1 mesencephalic precursor cells depends on activation of multiple mitogen-activated protein kinase pathways,” STEM CELLS, vol. 27, no. 8, pp. 2009–2021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Storch, H. A. Lester, B. O. Boehm, and J. Schwarz, “Functional characterization of dopaminergic neurons derived from rodent mesencephalic progenitor cells,” Journal of Chemical Neuroanatomy, vol. 26, no. 2, pp. 133–142, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Kim, J. A. Efe, S. Zhu et al., “Direct reprogramming of mouse fibroblasts to neural progenitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 19, pp. 7838–7843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Thier, P. Wörsdörfer, Y. B. Lakes et al., “Direct conversion of fibroblasts into stably expandable neural stem cells,” Cell Stem Cell, vol. 10, no. 4, pp. 473–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. B.-Y. Hu, J. P. Weick, J. Yu et al., “Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4335–4340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Hargus, M. Ehrlich, M. J. Araúzo-Bravo et al., “Origin-dependent neural cell identities in differentiated human iPSCs in vitro and after transplantation into the mouse brain,” Cell Reports, vol. 8, no. 6, pp. 1697–1703, 2014. View at Publisher · View at Google Scholar · View at Scopus