Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016, Article ID 6729268, 9 pages
http://dx.doi.org/10.1155/2016/6729268
Research Article

Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

1DAHFMO Unit of Histology and Medical Embryology, Interuniversity Institute of Myology, Sapienza University of Rome, Via Scarpa 14, 00161 Rome, Italy
2Department of Biological Adaptation and Ageing B2A (CNRS UMR 8256, INSERM ERL U1164, UPMC P6), Pierre et Marie Curie University (Paris 6), 75005 Paris, France
3Biology, Molecular Medicine and Nano-Biotechnologies Institute, C.N.R., Biology and Biotechnologies Department, Sapienza University of Rome, 00185 Rome, Italy
4Gynaecological Oncology, Oncology Department, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
5Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, P.O. Box 1500, 3001 Leuven, Belgium

Received 7 July 2015; Revised 2 September 2015; Accepted 4 September 2015

Academic Editor: Gary E. Lyons

Copyright © 2016 Dario Coletti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Argilés, S. Busquets, B. Stemmler, and F. J. López-Soriano, “Cancer cachexia: understanding the molecular basis,” Nature Reviews Cancer, vol. 14, no. 11, pp. 754–762, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Gilabert, E. Calvo, A. Airoldi et al., “Pancreatic cancer-induced cachexia is Jak2-dependent in mice,” Journal of Cellular Physiology, vol. 229, no. 10, pp. 1437–1443, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. D. W. Gould, I. Lahart, A. R. Carmichael, Y. Koutedakis, and G. S. Metsios, “Cancer cachexia prevention via physical exercise: molecular mechanisms,” Journal of Cachexia, Sarcopenia and Muscle, vol. 4, no. 2, pp. 111–124, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Tisdale, “Mechanisms of cancer cachexia,” Physiological Reviews, vol. 89, no. 2, pp. 381–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Berardi, P. Aulino, I. Murfuni et al., “Skeletal muscle is enriched in hematopoietic stem cells and not inflammatory cells in cachectic mice,” Neurological Research, vol. 30, no. 2, pp. 160–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. W. A. He, E. Berardi, V. M. Cardillo et al., “NF-κB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia,” The Journal of Clinical Investigation, vol. 123, no. 11, pp. 4821–4835, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Penna, D. Costamagna, A. Fanzani, G. Bonelli, F. M. Baccino, and P. Costelli, “Muscle wasting and impaired Myogenesis in tumor bearing mice are prevented by ERK inhibition,” PLoS ONE, vol. 5, no. 10, Article ID e13604, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Irwin, A. W. Smith, A. McTiernan et al., “Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study,” Journal of Clinical Oncology, vol. 26, no. 24, pp. 3958–3964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. W. Puetz and M. P. Herring, “Differential effects of exercise on cancer-related fatigue during and following treatment: a meta-analysis,” American Journal of Preventive Medicine, vol. 43, no. 2, pp. e1–e24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Pekmezi and W. Demark-Wahnefried, “Updated evidence in support of diet and exercise interventions in cancer survivors,” Acta Oncologica, vol. 50, no. 2, pp. 167–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. M. Speck, K. S. Courneya, L. C. Mâsse, S. Duval, and K. H. Schmitz, “An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis,” Journal of Cancer Survivorship, vol. 4, no. 2, pp. 87–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. I. Mishra, R. W. Scherer, P. M. Geigle et al., “Exercise interventions on health-related quality of life for cancer survivors,” Cochrane Database of Systematic Reviews, vol. 8, Article ID CD007566, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. G. B. Stene, J. L. Helbostad, T. R. Balstad, I. I. Riphagen, S. Kaasa, and L. M. Oldervoll, “Effect of physical exercise on muscle mass and strength in cancer patients during treatment—a systematic review,” Critical Reviews in Oncology/Hematology, vol. 88, no. 3, pp. 573–593, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. C. de Lima, L. E. Alves, F. Iagher et al., “Anaerobic exercise reduces tumor growth, cancer cachexia and increases macrophage and lymphocyte response in Walker 256 tumor-bearing rats,” European Journal of Applied Physiology, vol. 104, no. 6, pp. 957–964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. F. F. Donatto, R. X. Neves, F. O. Rosa et al., “Resistance exercise modulates lipid plasma profile and cytokine content in the adipose tissue of tumour-bearing rats,” Cytokine, vol. 61, no. 2, pp. 426–432, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. A. M. W. Petersen and B. K. Pedersen, “The anti-inflammatory effect of exercise,” Journal of Applied Physiology, vol. 98, no. 4, pp. 1154–1162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Aulino, E. Berardi, V. M. Cardillo et al., “Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse,” BMC Cancer, vol. 10, article 363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. D. Holmes, W. Y. Chen, D. Feskanich, C. H. Kroenke, and G. A. Colditz, “Physical activity and survival after breast cancer diagnosis,” The Journal of the American Medical Association, vol. 293, no. 20, pp. 2479–2486, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Kilkenny, W. J. Browne, I. C. Cuthill, M. Emerson, and D. G. Altman, “Improving bioscience research reporting: the arrive guidelines for reporting animal research,” PLoS Biology, vol. 8, no. 6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Coletti, E. Berardi, P. Aulino et al., “Substrains of inbred mice differ in their physical activity as a behavior,” The Scientific World Journal, vol. 2013, Article ID 237260, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Coletti, V. Moresi, S. Adamo, M. Molinaro, and D. Sassoon, “Tumor necrosis factor-α gene transfer induces cachexia and inhibits muscle regeneration,” Genesis, vol. 43, no. 3, pp. 120–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Shadfar, M. E. Couch, K. A. McKinney et al., “Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo,” Nutrition and Cancer, vol. 63, no. 5, pp. 749–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Wysong, M. Couch, S. Shadfar et al., “NF-kappaB inhibition protects against tumor-induced cardiac atrophy in vivo,” American Journal of Pathology, vol. 178, no. 3, pp. 1059–1068, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Wang and J. E. Pessin, “Mechanisms for fiber-type specificity of skeletal muscle atrophy,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 16, no. 3, pp. 243–250, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. J. G. Tidball and M. Wehling-Henricks, “Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo,” The Journal of Physiology, vol. 578, no. 1, pp. 327–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. C. Olguin and B. B. Olwin, “Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal,” Developmental Biology, vol. 275, no. 2, pp. 375–388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. C. Olguin, Z. H. Yang, S. J. Tapscott, and B. B. Olwin, “Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination,” The Journal of Cell Biology, vol. 177, no. 5, pp. 769–779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. L. Allen, B. C. Harrison, A. Maass, M. L. Bell, W. C. Byrnes, and L. A. Leinwand, “Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse,” Journal of Applied Physiology, vol. 90, no. 5, pp. 1900–1908, 2001. View at Google Scholar · View at Scopus
  29. C. N. Holick, P. A. Newcomb, A. Trentham-Dietz et al., “Physical activity and survival after diagnosis of invasive breast cancer,” Cancer Epidemiology Biomarkers & Prevention, vol. 17, no. 2, pp. 379–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Meyerhardt, E. L. Giovannucci, M. D. Holmes et al., “Physical activity and survival after colorectal cancer diagnosis,” Journal of Clinical Oncology, vol. 24, no. 22, pp. 3527–3534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Houle-Leroy, T. Garland Jr., J. G. Swallow, and H. Guderley, “Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus,” Journal of Applied Physiology, vol. 89, no. 4, pp. 1608–1616, 2000. View at Google Scholar · View at Scopus
  32. P. Pessina, V. Conti, F. Pacelli et al., “Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration,” Oncology Reports, vol. 24, no. 3, pp. 741–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Tiffin, R. D. Williams, J. Shipley, and K. Pritchard-Jones, “PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells,” British Journal of Cancer, vol. 89, no. 2, pp. 327–332, 2003. View at Publisher · View at Google Scholar · View at Scopus