Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016 (2016), Article ID 9581350, 15 pages
http://dx.doi.org/10.1155/2016/9581350
Research Article

Comparison of Immunomodulation Properties of Porcine Mesenchymal Stromal/Stem Cells Derived from the Bone Marrow, Adipose Tissue, and Dermal Skin Tissue

1Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea
2Animal Biotechnology Division, National Institute of Animal Science & RDA, 77 Chuksan-gil, Kwonsun-Gu, Suwon 441-706, Republic of Korea
3Department of Obstetrics and Gynecology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
4Department of Orthopaedic Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju 660-702, Republic of Korea
5Research Institute of Life Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 660-701, Republic of Korea

Received 8 April 2015; Revised 4 September 2015; Accepted 6 September 2015

Academic Editor: Dominik Wolf

Copyright © 2016 Sun-A Ock et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Stamm, B. Westphal, H.-D. Kleine et al., “Autologous bone-marrow stem-cell transplantation for myocardial regeneration,” The Lancet, vol. 361, no. 9351, pp. 45–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Keating, “Mesenchymal stromal cells: new directions,” Cell Stem Cell, vol. 10, no. 6, pp. 709–716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. A. I. Caplan, “Why are MSCs therapeutic? New data: new insight,” The Journal of Pathology, vol. 217, no. 2, pp. 318–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Schubert, H. Poilvache, C. Galli, P. Gianello, and D. Dufrane, “Galactosyl-knock-out engineered pig as a xenogenic donor source of adipose MSCs for bone regeneration,” Biomaterials, vol. 34, no. 13, pp. 3279–3289, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Bosch, S. L. Pratt, and S. L. Stice, “Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells,” Biology of Reproduction, vol. 74, no. 1, pp. 46–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-A. Ock, B.-G. Jeon, and G.-J. Rho, “Comparative characterization of porcine mesenchymal stem cells derived from bone marrow extract and skin tissues,” Tissue Engineering Part C: Methods, vol. 16, no. 6, pp. 1481–1491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Riekstina, R. Muceniece, I. Cakstina, I. Muiznieks, and J. Ancans, “Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions,” Cytotechnology, vol. 58, no. 3, pp. 153–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. C. Leijs, G. M. van Buul, E. Lubberts et al., “Effect of arthritic synovial fluids on the expression of immunomodulatory factors by mesenchymal stem cells: an explorative in vitro study,” Frontiers in Immunology, vol. 3, article 231, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. G. J. Rho, B. M. Kumar, and S. Balasubramanian, “Porcine mesenchymal stem cells—current technological status and future perspective,” Frontiers in Bioscience, vol. 14, no. 10, pp. 3942–3961, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E.-J. Kang, Y.-H. Lee, M.-J. Kim et al., “Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease,” Journal of Tissue Engineering and Regenerative Medicine, vol. 7, no. 3, pp. 169–182, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. L. R. Gao, N. K. Zhang, Q. A. Ding et al., “Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton's jelly-derived mesenchymal stem cells and embryonic stem cells,” Cell Transplantation, vol. 22, no. 10, pp. 1883–1900, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Liu, C. Wu, Q. Lyu et al., “Germline stem cells and neo-oogenesis in the adult human ovary,” Developmental Biology, vol. 306, no. 1, pp. 112–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Kumar, I. Hinduja, P. Nagvenkar et al., “Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders,” Stem Cells and Development, vol. 18, no. 3, pp. 435–445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Ge, J. Jiang, M. L. Baroja et al., “Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance,” American Journal of Transplantation, vol. 9, no. 8, pp. 1760–1772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Le Blanc, F. Frassoni, L. Ball et al., “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study,” The Lancet, vol. 371, no. 9624, pp. 1579–1586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Liu, M. Yuan, K. Hou et al., “Immune characterization of mesenchymal stem cells in human umbilical cord Wharton's jelly and derived cartilage cells,” Cellular Immunology, vol. 278, no. 1-2, pp. 35–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Devine, C. Cobbs, M. Jennings, A. Bartholomew, and R. Hoffman, “Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates,” Blood, vol. 101, no. 8, pp. 2999–3001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. E. M. Walters, E. Wolf, J. J. Whyte et al., “Completion of the swine genome will simplify the production of swine as a large animal biomedical model,” BMC Medical Genomics, vol. 5, article 55, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Lai, D. Kolber-Simonds, K.-W. Park et al., “Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning,” Science, vol. 295, no. 5557, pp. 1089–1092, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. B. A. Bunnell, M. Flaat, C. Gagliardi, B. Patel, and C. Ripoll, “Adipose-derived stem cells: Isolation, expansion and differentiation,” Methods, vol. 45, no. 2, pp. 115–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C.-Q. Qu, G.-H. Zhang, L.-J. Zhang, and G.-S. Yang, “Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells,” In Vitro Cellular & Developmental Biology—Animal, vol. 43, no. 2, pp. 95–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. B. Subbarao, I. Ullah, E. J. Kim et al., “Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium,” International Journal of Molecular Sciences, vol. 16, no. 5, pp. 10934–10951, 2015. View at Publisher · View at Google Scholar
  24. T. A. Prokhorova, L. M. Harkness, U. Frandsen et al., “Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel,” Stem Cells and Development, vol. 18, no. 1, pp. 47–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Liu, X. F. Lu, L. Wan et al., “Suppression of human peripheral blood lymphocyte proliferation by immortalized mesenchymal stem cells derived from bone marrow of Banna Minipig inbred-line,” Transplantation Proceedings, vol. 36, no. 10, pp. 3272–3275, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Groth, S. Ottinger, C. Kleist et al., “Evaluation of porcine mesenchymal stem cells for therapeutic use in human liver cancer,” International Journal of Oncology, vol. 40, no. 2, pp. 391–401, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Ma, J. Xu, J. Zhuang et al., “Combination of C-X-C motif chemokine 9 and C-X-C motif chemokine 10 antibodies with FTY720 prolongs the survival of cardiac retransplantation allografts in a mouse model,” Experimental and Therapeutic Medicine, vol. 9, no. 3, pp. 1006–1012, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Chen, Z. Lu, D. Cheng, S. Peng, and H. Wang, “Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells,” PLoS ONE, vol. 6, no. 5, Article ID e19964, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-A. Ock, G.-H. Maeng, Y.-M. Lee et al., “Donor matched functional and molecular characterization of canine mesenchymal stem cells derived from different origins,” Cell Transplantation, vol. 22, no. 12, pp. 2311–2321, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Raabe, K. Shell, A. Würtz, C. M. Reich, S. Wenisch, and S. Arnhold, “Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells,” Veterinary Research Communications, vol. 35, no. 6, pp. 355–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Vacanti, E. Kong, G. Suzuki, K. Sato, J. M. Canty, and T. Lee, “Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture,” Journal of Cellular Physiology, vol. 205, no. 2, pp. 194–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Musina, E. S. Bekchanova, and G. T. Sukhikh, “Comparison of mesenchymal stem cells obtained from different human tissues,” Bulletin of Experimental Biology and Medicine, vol. 139, no. 4, pp. 504–509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Y. Meligy, K. Shigemura, H. M. Behnsawy, M. Fujisawa, M. Kawabata, and T. Shirakawa, “The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue,” In Vitro Cellular and Developmental Biology—Animal, vol. 48, no. 4, pp. 203–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Sakaguchi, I. Sekiya, K. Yagishita, and T. Muneta, “Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source,” Arthritis & Rheumatism, vol. 52, no. 8, pp. 2521–2529, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. B. Kim, V. Sebastiano, G. Wu et al., “Oct4-induced pluripotency in adult neural stem cells,” Cell, vol. 136, no. 3, pp. 411–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Moriscot, F. de Fraipont, M.-J. Richard et al., “Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro,” Stem Cells, vol. 23, no. 4, pp. 594–603, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Simonsen, C. Rosada, N. Serakinci et al., “Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells,” Nature Biotechnology, vol. 20, no. 6, pp. 592–596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Zimmermann, M. Voss, S. Kaiser, U. Kapp, C. F. Waller, and U. M. Martens, “Lack of telomerase activity in human mesenchymal stem cells,” Leukemia, vol. 17, no. 6, pp. 1146–1149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Sethe, A. Scutt, and A. Stolzing, “Aging of mesenchymal stem cells,” Ageing Research Reviews, vol. 5, no. 1, pp. 91–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. L. L. Wei, K. Gao, P. Q. Liu et al., “Mesenchymal stem cells from Chinese Guizhou minipig by hTERT gene transfection,” Transplantation Proceedings, vol. 40, no. 2, pp. 547–550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. B.-G. Jeon, D.-O. Kwack, and G.-J. Rho, “Variation of telomerase activity and morphology in porcine mesenchymal stem cells and fibroblasts during prolonged in vitro culture,” Animal Biotechnology, vol. 22, no. 4, pp. 197–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Uccelli, V. Pistoia, and L. Moretta, “Mesenchymal stem cells: a new strategy for immunosuppression?” Trends in Immunology, vol. 28, no. 5, pp. 219–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. J.-L. Chen, Z.-K. Guo, C. Xu et al., “Mesenchymal stem cells suppress allogeneic T cell responses by secretion of TGF-beta1,” Zhongguo Shi Yan Xue Ye Xue Za Zhi, vol. 10, no. 4, pp. 285–288, 2002. View at Google Scholar · View at Scopus
  44. N. D. Germain, N. W. Hartman, C. Cai, S. Becker, J. R. Naegele, and L. B. Grabel, “Teratocarcinoma formation in embryonic stem cell-derived neural progenitor hippocampal transplants,” Cell Transplantation, vol. 21, no. 8, pp. 1603–1611, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. O. F. Gordeeva and T. M. Nikonova, “Development of experimental tumors formed by mouse and human embryonic stem and teratocarcinoma cells after subcutaneous and intraperitoneal transplantations into immunodeficient and immunocompetent mice,” Cell Transplantation, vol. 22, no. 10, pp. 1901–1914, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Ramasamy, E. W.-F. Lam, I. Soeiro, V. Tisato, D. Bonnet, and F. Dazzi, “Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth,” Leukemia, vol. 21, no. 2, pp. 304–310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Zhu, W. Xu, R. Jiang et al., “Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo,” Experimental and Molecular Pathology, vol. 80, no. 3, pp. 267–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Saito, J.-Q. Kuang, B. Bittira, A. Al-Khaldi, and R. C.-J. Chiu, “Xenotransplant cardiac chimera: immune tolerance of adult stem cells,” Annals of Thoracic Surgery, vol. 74, no. 1, pp. 19–24, 2002. View at Publisher · View at Google Scholar · View at Scopus