Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017 (2017), Article ID 2362630, 14 pages
https://doi.org/10.1155/2017/2362630
Research Article

Molecular Genetic Analysis of Human Endometrial Mesenchymal Stem Cells That Survived Sublethal Heat Shock

1Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. Petersburg 194064, Russia
2Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, Moscow 10510, Russia
3Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, Moscow 119333, Russia

Correspondence should be addressed to A. E. Vinogradov, O. V. Anatskaya, and L. L. Alekseenko

Received 20 April 2017; Accepted 13 July 2017; Published 10 December 2017

Academic Editor: Josef Buttigieg

Copyright © 2017 A. E. Vinogradov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. K. Salem and C. Thiemermann, “Mesenchymal stromal cells: current understanding and clinical status,” Stem Cells, vol. 28, no. 3, pp. 585–596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Billing, B. H. Hamidane, S. S. Dib et al., “Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers,” Scientific Reports, vol. 6, no. 1, article 21507, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. C. E. Gargett, K. E. Schwab, and J. A. Deane, “Endometrial stem/progenitor cells: the first 10 years,” Human Reproduction, vol. 22, no. 2, pp. dmv051–dmv163, 2016. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Bockeria, V. Bogin, O. Bockeria et al., “Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic,” Journal of Translational Medicine, vol. 11, no. 1, p. 56, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Tarte, J. Gaillard, J. Lataillade et al., “Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation,” Blood, vol. 115, no. 8, pp. 1549–1553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Paula, T. M. Martins, A. Zonari et al., “Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation,” Stem Cell Research & Therapy, vol. 6, no. 1, p. 76, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Rubio, J. Garcia-Castro, M. C. Martin et al., “Spontaneous human adult stem cell transformation,” Cancer Research, vol. 65, no. 8, pp. 3035–3039, 2005. View at Publisher · View at Google Scholar
  8. G. V. Rosland, A. Svendsen, A. Torsvik et al., “Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation,” Cancer Research, vol. 69, no. 13, pp. 5331–5339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Torsvik, G. V. Røsland, A. Svendsen et al., “Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter,” Cancer Research, vol. 70, no. 15, pp. 6393–6396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. M. Pan, P. E. Fouraschen, P. E. de Ruiter et al., “Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells,” Experimental Biology and Medicine, vol. 239, no. 1, pp. 105–115, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Tower, “Stress and stem cells,” Wiley interdisciplinary reviews, Developmental Biology, vol. 1, no. 6, pp. 789–802, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. O. L. Kantidze, A. K. Velichko, A. V. Luzhin, and S. V. Razin, “Heat stress-induced DNA damage,” Acta Naturae, vol. 8, no. 2, pp. 75–78, 2016. View at Google Scholar
  13. R. K. Gupta and U. K. Srinivas, “Heat shock induces chromosomal instability in near-tetraploid embryonal carcinoma cells,” Cancer Biology & Therapy, vol. 7, no. 9, pp. 1471–1480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. L. L. Alekseenko, V. I. Zemelko, V. V. Zenin et al., “Heat shock induces apoptosis in human embryonic stem cells but a premature senescence phenotype in their differentiated progeny,” Cell Cycle, vol. 11, no. 17, pp. 3260–3269, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. L. L. Alekseenko, V. I. Zemelko, A. P. Domnina et al., “Sublethal heat shock induces premature senescence rather than apoptosis in human mesenchymal stem cells,” Cell Stress and Chaperones, vol. 19, no. 3, pp. 355–366, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. M. K. Pugsley, S. Authier, and M. J. Curtis, “Principles of safety pharmacology,” British Journal of Pharmacology, vol. 154, no. 7, pp. 1382–1399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. E. Dayanc, S. H. Beachy, J. R. Ostberg, and E. A. Repasky, “Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses,” Intenational Journal of Hyperthermia, vol. 24, no. 1, pp. 41–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Takeuchi, A. Higashino, K. Takeuchi et al., “Transcriptional dynamics of immortalized human mesenchymal stem cells during transformation,” PLoS One, vol. 10, no. 5, article e0126562, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. V. I. Zemel’ko, T. M. Grinchuk, A. P. Domnina et al., “Multipotent mesenchymal stem cells of desquamated endometrium: isolation, characterization and use as feeder layer for maintenance of human embryonic stem cell lines,” Tsitologiia, vol. 53, no. 12, pp. 919–929, 2011. View at Google Scholar
  20. L. G. Shaffer, M. L. Slovak, and L. J. Campbell, “ISCN,” in An International System for Human Cytogenetic Nomenclature, S Karger, Basel, 2009. View at Google Scholar
  21. A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for Illumina sequence data,” Bioinformatics, vol. 30, no. 15, pp. 2114–2120, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. N. A. O'Leary, M. W. Wright, J. R. Brister et al., “Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation,” Nucleic Acids Researh, vol. 44, no. D1, pp. D733–D745, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, article R2524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Lindner and C. Friedel, “A comprehensive evaluation of alignment algorithms in the context of RNA-seq,” PLoS One, vol. 7, no. 12, article e52403, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Vazquez-Martin, O. V. Anatskaya, A. Giuliani et al., “Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature,” Oncotarget, vol. 7, no. 46, pp. 75235–75260, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differential expression analyses for RNA-sequencing and microarray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Seyednasrollah, A. Laiho, and L. L. Elo, “Comparison of software packages for detecting differential expression in RNA-seq studies,” Briefings in Bioinformatics, vol. 16, no. 1, pp. 59–70, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Zhou, H. Lindsay, and M. D. Robinson, “Robustly detecting differential expression in RNA sequencing data using observation weights,” Nucleic Acids Research, vol. 42, no. 11, article e91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. A. E. Vinogradov, “Consolidation of slow or fast but not moderately evolving genes at the level of pathways and processes,” Gene, vol. 561, no. 1, pp. 30–34, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. A. E. Vinogradov, “Accelerated pathway evolution in mouse-like rodents involves cell cycle control,” Mammalian Genome, vol. 26, no. 11-12, pp. 609–618, 2015. View at Google Scholar
  32. Gene Ontology Consortium, “Gene ontology consortium: going forward,” Nucleic Acids Research, vol. 43, no. D1, pp. D1049–D1056, 2015. View at Publisher · View at Google Scholar · View at Scopus
  33. NCBI Resource Coordinators, “Database resources of the National Center for Biotechnology Information,” Nucleic Acid s Research, vol. 44, no. D1, pp. D7–D19, 2016. View at Publisher · View at Google Scholar · View at Scopus
  34. J. D. Storey and R. Tibshirani, “Statistical significance for genomewide studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9440–9445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10: protein-protein interaction networks, integrated over the tree of life,” Nucleic Acids Research, vol. 43, no. D1, pp. D447–D452, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. J. X. Hu, C. E. Thomas, and S. Brunak, “Network biology concepts in complex disease comorbidities,” Nature Review Genetics, vol. 17, no. 10, pp. 615–629, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Chen, H. Shen, L. G. Zhang et al., “Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer,” International Journal of Molecular Medicine, vol. 37, no. 6, pp. 1576–1586, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. R. R. Vallabhajosyula, D. Chakravarti, S. Lutfeali, A. Ray, and A. Raval, “Identifying hubs in protein interaction networks,” PLoS One, vol. 4, no. 4, article e5344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Zhang, C. Gaiteri, L. G. Bodea et al., “Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease,” Cell, vol. 153, no. 3, pp. 707–720, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. Han, N. Bertin, T. Hao et al., “Evidence for dynamically organized modularity in the yeast protein–protein interaction network,” Nature, vol. 430, no. 6995, pp. 88–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Hurwitz and P. Stauffer, “Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care,” Seminars in Oncology, vol. 41, no. 6, pp. 714–729, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. T. M. Grinchuk, M. A. Shilina, and L. L. Alekseenko, “Long-term cultivation of Chinese hamster fibroblasts V-79 RJK under elevated temperature results in karyotype destabilization,” Cell and Tissue Biology, vol. 9, no. 2, pp. 119–126, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Hochstenbach, E. van Binsbergen, J. Engelen et al., “Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands,” European Journal of Medical Genetics, vol. 52, no. 4, pp. 161–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. D. T. Miller, M. P. Adam, S. Aradhya et al., “Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies,” American Journal of Human Genetics, vol. 86, no. 5, pp. 749–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Massalska, J. D. Zimowski, J. Bijok et al., “First trimester pregnancy loss: clinical implications of genetic testing,” Journal of Obstetrics Gynaecological Research, vol. 43, no. 1, pp. 23–29, 2017. View at Publisher · View at Google Scholar
  46. D. B. Mahat, H. H. Salamanca, F. M. Duarte, C. G. Danko, and J. T. Lis, “Mammalian heat shock response and mechanisms underlying its genome-wide transcriptional regulation,” Molecular Cell, vol. 62, no. 1, pp. 63–78, 2016. View at Publisher · View at Google Scholar · View at Scopus
  47. A. E. Davies, K. Kortright, and K. B. Kaplan, “Adenomatous polyposis coli mutants dominantly activate Hsf1-dependent cell stress pathways through inhibition of microtubule dynamics,” Oncotaget, vol. 6, no. 28, pp. 25202–25216, 2015. View at Google Scholar
  48. T. Makhnevych and W. A. Houry, “The role of Hsp90 in protein complex assembly,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1823, no. 3, pp. 674–682, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. K. B. Kaplan and R. Li, “A prescription for ‘stress’-the role of Hsp90 in genome stability and cellular,” Trends in Cell Biology, vol. 22, no. 11, pp. 576–583, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Giam and G. Rancati, “Aneuploidy and chromosomal instability in cancer: a jackpot to chaos,” Cell Division, vol. 10, no. 1, p. 3, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, “Substantial contribution of extrinsic risk factors to cancer development,” Nature, vol. 529, no. 7584, pp. 43–47, 2016. View at Publisher · View at Google Scholar · View at Scopus
  52. S. G. Gao, R. M. Liu, Y. G. Zhao et al., “Integrative topological analysis of mass spectrometry data reveals molecular features with clinical relevance in esophageal squamous cell carcinoma,” Scientific Reports, vol. 6, no. 1, article 21586, 2016. View at Publisher · View at Google Scholar · View at Scopus
  53. C. S. Sørensen and R. G. Syljuåsen, “Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication,” Nucleic Acids Research, vol. 40, no. 2, pp. 477–486, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. J. E. McDermott, D. L. Diamond, C. Corley, A. L. Rasmussen, M. G. Katze, and K. M. Waters, “Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis,” BMC System Biology, vol. 6, no. 1, p. 28, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. K. G. Guruharsha, M. W. Kankel, and S. Artavanis-Tsakonas, “The Notch signaling system: recent insights into the complexity of a conserved pathway,” Nature Review Genetics, vol. 13, no. 9, pp. 654–666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Carter, M. Hofree, and T. Ideker, “Genotype to phenotype via network analysis,” Current Opinion in Genetics and Development, vol. 23, no. 6, pp. 611–621, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. R. A. Irizarry, C. Wang, Y. Zhou, and T. P. Speed, “Gene set enrichment analysis made simple,” Statistical Methods in Medical Research, vol. 18, no. 6, pp. 565–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. J. D. Morrow, W. Qiu, D. Chhabra et al., “Identifying a gene expression signature of frequent COPD exacerbations in peripheral blood using network methods,” BMC Medical Genomics, vol. 8, no. 1, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Qiao, F. Weissmann, M. Yamaguchi et al., “Mechanism of APC/CCDC20 activation by mitotic phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 19, pp. E2570–E2578, 2016. View at Publisher · View at Google Scholar · View at Scopus
  61. Z. Lin, X. Luo, and H. Yu, “Structural basis of cohesin cleavage by separase,” Nature, vol. 532, no. 7597, pp. 131–134, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. O. V. Anatskaya, E. A. Erenpreisa, N. N. Nikolsky, and A. E. Vinogradov, “Pair-wise cross-species transcriptome analysis of polyploidy associated expression changes of developmental gene modules,” Tsitologiia, vol. 57, no. 12, pp. 899–908, 2015. View at Google Scholar
  63. J. Erenpreisa, K. Salmina, A. Huna, T. R. Jackson, A. Vazquez-Martin, and M. S. Cragg, “The “virgin birth”, polyploidy, and the origin of cancer,” Oncoscience, vol. 2, no. 1, pp. 3–14, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. O. V. Anatskaya, N. V. Sidorenko, A. E. Vinogradov, and T. V. Beyer, “Impact of neonatal cryptosporidial gastroenteritis on epigenetic programming of rat hepatocytes,” Cell Biology International, vol. 31, no. 4, pp. 420–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. T. R. Jackson, K. Salmina, A. Huna et al., “DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells,” Cell Cycle, vol. 12, no. 3, pp. 430–441, 2013. View at Publisher · View at Google Scholar · View at Scopus
  66. O. Bajenova, N. Chaika, E. Tolkunova et al., “Carcinoembryonic antigen promotes colorectal cancer progression by targeting adherens junction complexes,” Experimental Cell Research, vol. 324, no. 2, pp. 115–123, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. O. Bajenova, A. Gorbunova, I. Evsyukov et al., “The genome-wide analysis of carcinoembryonic antigen signaling by colorectal cancer cells using RNA sequencing,” PLoS One, vol. 11, no. 9, article e0161256, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Luo, Z. Dai, X. Xie et al., “TeloPIN: a database of telomeric proteins interaction network in mammalian cells,” Database, vol. 2015, article bav018, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Hiyama and K. Hiyama, “Telomere and telomerase in stem cells,” British Journal of Cancer, vol. 96, no. 7, pp. 1020–1024, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. M. A. Nieto, R. Y. Huang, R. A. Jackson, and J. P. Thiery, “EMT:2016,” Cell, vol. 166, no. 1, pp. 21–45, 2016. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Maréchal and L. Zou, “DNA damage sensing by the ATM and ATR kinases,” Cold Spring Harbour Perspectives in Biology, vol. 5, no. 9, article a012716, 2013. View at Publisher · View at Google Scholar · View at Scopus
  72. G. Manic, F. Obrist, A. Sistigu, and I. Vitale, “Trial watch: targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy,” Molecular & Cellular Oncology, vol. 2, no. 4, article e1012976, 2015. View at Publisher · View at Google Scholar
  73. J. Nassour, S. Martien, N. Martin et al., “Defective DNA single-strand break repair is responsible for senescence and neoplastic escape of epithelial cells,” Nature Communication, vol. 7, article 10399, 2016. View at Publisher · View at Google Scholar · View at Scopus