Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017 (2017), Article ID 7215010, 8 pages
Review Article

Epigenetic Manipulation Facilitates the Generation of Skeletal Muscle Cells from Pluripotent Stem Cells

Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan

Correspondence should be addressed to Tomohiko Akiyama and Minoru S. H. Ko

Received 17 January 2017; Accepted 27 February 2017; Published 9 April 2017

Academic Editor: Atsushi Asakura

Copyright © 2017 Tomohiko Akiyama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Human pluripotent stem cells (hPSCs) have the capacity to differentiate into essentially all cell types in the body. Such differentiation can be directed to specific cell types by appropriate cell culture conditions or overexpressing lineage-defining transcription factors (TFs). Especially, for the activation of myogenic program, early studies have shown the effectiveness of enforced expression of TFs associated with myogenic differentiation, such as PAX7 and MYOD1. However, the efficiency of direct differentiation was rather low, most likely due to chromatin features unique to hPSCs, which hinder the access of TFs to genes involved in muscle differentiation. Indeed, recent studies have demonstrated that ectopic expression of epigenetic-modifying factors such as a histone demethylase and an ATP-dependent remodeling factor significantly enhances myogenic differentiation from hPSCs. In this article, we review the recent progress for in vitro generation of skeletal muscles from hPSCs through forced epigenetic and transcriptional manipulation.