Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012 (2012), Article ID 159680, 12 pages
http://dx.doi.org/10.6064/2012/159680
Review Article

Role of Hydrogen Sulfide in the Pathology of Inflammation

Department of Pathology, University of Otago, P.O. Box 4345, Christchurch 8140, New Zealand

Received 11 September 2012; Accepted 3 October 2012

Academic Editors: M. A. Choudhry, G. Marucci, and B. Rippe

Copyright © 2012 Madhav Bhatia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. US National Research Council, Subcommittee on Hydrogen Sulfide, Division of Medical Sciences. Hydrogen Sulfide. University Park Press, Baltimore Md, USA, 1979.
  2. M. Bhatia, “Hydrogen sulfide and substance P in inflammation,” Antioxidants and Redox Signaling, vol. 12, no. 10, pp. 1191–1202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Li, A. Hsu, and P. K. Moore, “Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases!,” Pharmacology and Therapeutics, vol. 123, no. 3, pp. 386–400, 2009. View at Google Scholar
  4. P. K. Moore, M. Bhatia, and S. Moochhala, “Hydrogen sulfide: from the smell of the past to the mediator of the future?” Trends in Pharmacological Sciences, vol. 24, no. 12, pp. 609–611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Bhatia, “Hydrogen sulfide as a vasodilator,” IUBMB Life, vol. 57, no. 9, pp. 603–606, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Zhao, J. Zhang, Y. Lu, and R. Wang, “The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener,” EMBO Journal, vol. 20, no. 21, pp. 6008–6016, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Abe and H. Kimura, “The possible role of hydrogen sulfide as an endogenous neuromodulator,” Journal of Neuroscience, vol. 16, no. 3, pp. 1066–1071, 1996. View at Google Scholar · View at Scopus
  8. M. Whiteman, L. Li, I. Kostetski et al., “Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide,” Biochemical and Biophysical Research Communications, vol. 343, no. 1, pp. 303–310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Y. Ali, C. Y. Ping, Y. Y. P. Mok et al., “Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide?” British Journal of Pharmacology, vol. 149, no. 6, pp. 625–634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. M. Hildebrandt and M. K. Grieshaber, “Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria,” FEBS Journal, vol. 275, no. 13, pp. 3352–3361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Goubern, M. Andriamihaja, T. Nübel, F. Blachier, and F. Bouillaud, “Sulfide, the first inorganic substrate for human cells,” FASEB Journal, vol. 21, no. 8, pp. 1699–1706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Levitt, J. Furne, J. Springfield, F. Suarez, and E. DeMaster, “Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa,” Journal of Clinical Investigation, vol. 104, no. 8, pp. 1107–1114, 1999. View at Google Scholar · View at Scopus
  13. R. O. Beauchamp Jr., J. S. Bus, and J. A. Popp, “A critical review of the literature on hydrogen sulfide toxicity,” Critical Reviews in Toxicology, vol. 13, no. 1, pp. 25–97, 1984. View at Google Scholar · View at Scopus
  14. R. P. Smith and R. A. Abbanat, “Protective effect of oxidized glutathione in acute sulfide poisoning,” Toxicology and Applied Pharmacology, vol. 9, no. 2, pp. 209–217, 1966. View at Google Scholar · View at Scopus
  15. H. Mitsuhashi, S. Yamashita, H. Ikeuchi et al., “Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils,” Shock, vol. 24, no. 6, pp. 529–534, 2005. View at Google Scholar · View at Scopus
  16. M. Whiteman, J. S. Armstrong, S. H. Chu et al., “The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite “scavenger”?” Journal of Neurochemistry, vol. 90, no. 3, pp. 765–768, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Whiteman, N. S. Cheung, Y. Z. Zhu et al., “Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain?” Biochemical and Biophysical Research Communications, vol. 326, no. 4, pp. 794–798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Chang, B. Geng, F. Yu et al., “Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats,” Amino Acids, vol. 34, no. 4, pp. 573–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Geng, J. Yang, Y. Qi et al., “H2S generated by heart in rat and its effects on cardiac function,” Biochemical and Biophysical Research Communications, vol. 313, no. 2, pp. 362–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Mazumder, X. Li, and S. Barik, “Translation control: a multifaceted regulator of inflammatory response,” Journal of Immunology, vol. 184, no. 7, pp. 3311–3319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Nathan, “Points of control in inflammation,” Nature, vol. 420, no. 6917, pp. 846–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hegde and M. Bhatia, “Hydrogen sulfide in inflammation: friend or foe?” Inflammation and Allergy, vol. 10, no. 2, pp. 118–122, 2011. View at Google Scholar · View at Scopus
  23. J. R. Rivers, A. Badiei, and M. Bhatia, “Hydrogen sulfide as a therapeutic target for inflammation,” Expert Opinion on Therapeutic Targets, vol. 16, no. 5, pp. 439–449, 2012. View at Google Scholar
  24. M. Bhatia and S. Moochhala, “Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome,” Journal of Pathology, vol. 202, no. 2, pp. 145–156, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Ratthe, M. Pelletier, C. J. Roberge, and D. Girard, “Activation of human neutrophils by the pollutant sodium sulfite: effect on cytokine production, chemotaxis, and cell surface expression of cell adhesion molecules,” Cellular Immunology, vol. 105, no. 2, pp. 169–175, 2002. View at Google Scholar · View at Scopus
  26. I. Beck-Speier, J. G. Liese, B. H. Belohradsky, and J. J. Godleski, “Sulfite stimulates NADPH oxidase of human neutrophils to produce active oxygen radicals via protein kinase C and Ca2+/calmodulin pathways,” Free Radical Biology and Medicine, vol. 14, no. 6, pp. 661–668, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Shigehara, H. Mitsuhashi, F. Ota et al., “Sulfite induces adherence of polymorphonuclear neutrophils to immobilized fibrinogen through activation of Mac-1 β2-integrin (CD11b/CD18),” Life Sciences, vol. 70, no. 19, pp. 2225–2232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Rinaldi, G. Gobbi, M. Pambianco, C. Micheloni, P. Mirandola, and M. Vitale, “Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3,” Laboratory Investigation, vol. 86, no. 4, pp. 391–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Bhatia, F. L. Wong, Y. Cao et al., “Pathophysiology of acute pancreatitis,” Pancreatology, vol. 5, no. 2-3, pp. 132–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Bhatia, M. Brady, S. Shokuhi et al., “Inflammatory mediators in acute pancreatitis,” Journal of Pathology, vol. 190, no. 2, pp. 117–125, 2000. View at Google Scholar
  31. M. Bhatia, “Acute pancreatitis as a model of SIRS,” Frontiers in Bioscience, vol. 14, no. 6, pp. 2042–2050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Bhatia, “Novel therapeutic targets for acute pancreatitis and associated multiple organ dysfunction syndrome,” Current Drug Targets, vol. 1, no. 4, pp. 343–351, 2002. View at Google Scholar
  33. M. Bhatia, J. P. Neoptolemos, and J. Slavin, “Inflammatory mediators as therapeutic targets in acute pancreatitis,” Current Opinion in Investigational Drugs, vol. 2, no. 4, pp. 496–501, 2001. View at Google Scholar · View at Scopus
  34. M. Bhatia, F. L. Wong, D. Fu, H. Y. Lau, S. M. Moochhala, and P. K. Moore, “Role of hydrogen sulfide in acute pancreatitis and associated lung injury,” FASEB Journal, vol. 19, no. 6, pp. 623–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Kumaraswamy, Z. Jing, and M. Bhatia, “Aminooxyacetate inhibits hydrogen sulfide and ammonium synthesis and protects mice in acute pancreatitis,” International Journal of Integrative Biology, vol. 8, no. 1, pp. 7–14, 2009. View at Google Scholar · View at Scopus
  36. R. Tamizhselvi, P. K. Moore, and M. Bhatia, “Hydrogen sulfide acts as a mediator of inflammation inacute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells,” Journal of Cellular and Molecular Medicine, vol. 11, no. 2, pp. 315–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Tamizhselvi, P. K. Moore, and M. Bhatia, “Inhibition of hydrogen sulfide synthesis attenuates chemokine production and protects mice against acute pancreatitis and associated lung injury,” Pancreas, vol. 36, no. 4, pp. e24–e31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Tamizhselvi, Y. H. Koh, J. Sun, H. Zhang, and M. Bhatia, “Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to caerulein-treated pancreatic acinar cells through NF-κB and Src-family kinases pathway,” Experimental Cell Research, vol. 316, no. 9, pp. 1625–1636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Tamizhselvi, J. Sun, Y. H. Koh, and M. Bhatia, “Effect of hydrogen sulfide on the phosphatidylinositol 3-kinase-protein kinase B pathway and on caerulein-induced cytokine production in isolated mouse pancreatic acinar cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 329, no. 3, pp. 1166–1177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Bhatia, L. Zhi, H. Zhang, S. W. Ng, and P. K. Moore, “Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice,” American Journal of Physiology, vol. 291, no. 5, pp. L896–L904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Bhatia, A. K. Saluja, B. Hofbauer et al., “Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4760–4765, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Bhatia, J. Slavin, Y. Cao, A. I. Basbaum, and J. P. Neoptolemos, “Preprotachykinin-A gene deletion protects mice against acute pancreatitis and associated lung injury,” American Journal of Physiology, vol. 284, no. 5, pp. G830–G836, 2003. View at Google Scholar · View at Scopus
  43. H. Y. Lau, F. L. Wong, and M. Bhatia, “A key role of neurokinin 1 receptors in acute pancreatitis and associated lung injury,” Biochemical and Biophysical Research Communications, vol. 327, no. 2, pp. 509–515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Sun and M. Bhatia, “Blockade of neurokinin-1 receptor attenuates CC and CXC chemokine production in experimental acute pancreatitis and associated lung injury,” American Journal of Physiology, vol. 292, no. 1, pp. G143–G153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Y. Lau and M. Bhatia, “The effect of CP96,345 on the expression of tachykinins and neurokinin receptors in acute pancreatitis,” Journal of Pathology, vol. 208, no. 3, pp. 364–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Y. Lau and M. Bhatia, “Effect of CP-96,345 on the expression of adhesion molecules in acute pancreatitis in mice,” American Journal of Physiology, vol. 292, no. 5, pp. G1283–G1292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. H. Koh, S. Moochhala, and M. Bhatia, “The role of neutral endopeptidase in caerulein-induced acute pancreatitis,” Journal of Immunology, vol. 187, no. 10, pp. 5429–5439, 2011. View at Google Scholar
  48. E. F. Grady, S. K. Yoshimi, J. Maa et al., “Substance P mediates inflammatory oedema in acute pancreatitis via activation of the neurokinin-1 receptor in rats and mice,” British Journal of Pharmacology, vol. 130, no. 3, pp. 505–512, 2000. View at Google Scholar · View at Scopus
  49. J. Maa, E. F. Grady, S. K. Yoshimi et al., “Subtance P is a determinant of lethality in diet-induced hemorrhagic pancreatitis in mice,” Surgery, vol. 128, no. 2, pp. 232–239, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. J. He, J. H. Winston, T. E. Yusuf et al., “Intraductal administration of an NK1 receptor antagonist attenuates the inflammatory response to retrograde infusion of radiological contrast in rats: implications for the pathogenesis and prevention of ERCP-induced pancreatitis,” Pancreas, vol. 27, no. 1, pp. e13–e17, 2003. View at Google Scholar · View at Scopus
  51. R. D. Ramnath and M. Bhatia, “Substance P treatment stimulates chemokine synthesis in pancreatic acinar cells via the activation of NF-κB,” American Journal of Physiology, vol. 291, no. 6, pp. G1113–G1119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. R. D. Ramnath, J. Sun, S. Adhikari, L. Zhi, and M. Bhatia, “Role of PKC-δ on substance P-induced chemokine synthesis in pancreatic acinar cells,” American Journal of Physiology, vol. 294, no. 3, pp. C683–C692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. R. D. Ramnath, J. Sun, S. Adhikari, and M. Bhatia, “Effect of mitogen-activated protein kinases on chemokine synthesis induced by substance P in mouse pancreatic acinar cells,” Journal of Cellular and Molecular Medicine, vol. 11, no. 6, pp. 1326–1341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. R. D. Ramnath, J. Sun, and M. Bhatia, “Role of calcium in substance P-induced chemokine synthesis in mouse pancreatic acinar cells,” British Journal of Pharmacology, vol. 154, no. 6, pp. 1339–1348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. D. Ramnath, J. Sun, and M. Bhatia, “Involvement of SRC family kinases in substance P-induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis,” Journal of Pharmacology and Experimental Therapeutics, vol. 329, no. 2, pp. 418–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. D. Ramnath, J. Sun, and M. Bhatia, “PKC δ mediates pro-inflammatory responses in a mouse model of caerulein-induced acute pancreatitis,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 1055–1063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Sun, R. D. Ramnath, and M. Bhatia, “Neuropeptide substance P upregulates chemokine and chemokine receptor expression in primary mouse neutrophils,” American Journal of Physiology, vol. 293, no. 2, pp. C696–C704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Sun, R. D. Ramnath, L. Zhi, R. Tamizhselvi, and M. Bhatia, “Substance P enhances NF-κB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways,” American Journal of Physiology, vol. 294, no. 6, pp. C1586–C1596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Sun, R. D. Ramnath, R. Tamizhselvi, and M. Bhatia, “Neurokinin A engages neurokinin-1 receptor to induce NF-κB-dependent gene expression in murine macrophages: implications of ERK1/2 and PI 3-kinase/Akt pathways,” American Journal of Physiology, vol. 295, no. 3, pp. C679–C691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Sun, R. D. Ramnath, R. Tamizhselvi, and M. Bhatia, “Role of protein kinase C and phosphoinositide 3-kinase-Akt in substance P-induced proinflammatory pathways in mouse macrophages,” FASEB Journal, vol. 23, no. 4, pp. 997–1010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Bhatia, J. N. Sidhapuriwala, S. Wei Ng, R. Tamizhselvi, and S. M. Moochhala, “Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis,” Journal of Cellular and Molecular Medicine, vol. 12, no. 2, pp. 580–590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Tamizhselvi, P. Shrivastava, Y. H. Koh, H. Zhang, and M. Bhatia, “Preprotachykinin-A gene deletion regulates hydrogen sulfide-induced Toll-like receptor 4 signaling pathway in cerulein-treated pancreatic acinar cells,” Pancreas, vol. 40, no. 3, pp. 444–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Devi Ramnath, S. Weing, M. He et al., “Inflammatory mediators in sepsis: cytokines, chemokines, adhesion molecules and gases,” Journal of Organ Dysfunction, vol. 2, no. 2, pp. 80–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemiology of sepsis in the United States from 1979 through 2000,” New England Journal of Medicine, vol. 348, no. 16, pp. 1546–1554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. M. M. Levy, R. P. Dellinger, S. R. Townsend et al., “The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis,” Critical Care Medicine, vol. 38, no. 2, pp. 367–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Bhatia, M. He, H. Zhang, and S. Moochhala, “Sepsis as a model of SIRS,” Frontiers in Bioscience, vol. 14, no. 12, pp. 4703–4711, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Zhang, L. Zhi, P. K. Moore, and M. Bhatia, “Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse,” American Journal of Physiology, vol. 290, no. 6, pp. L1193–L1201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Zhang, L. Zhi, S. Moochhala, P. K. Moore, and M. Bhatia, “Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-κB,” American Journal of Physiology, vol. 292, no. 4, pp. L960–L971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Zhang, L. Zhi, S. M. Moochhala, P. K. Moore, and M. Bhatia, “Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis,” Journal of Leukocyte Biology, vol. 82, no. 4, pp. 894–905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Zhang, S. M. Moochhala, and M. Bhatia, “Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis,” Journal of Immunology, vol. 181, no. 6, pp. 4320–4331, 2008. View at Google Scholar · View at Scopus
  71. L. Zhi, A. D. Ang, H. Zhang, P. K. Moore, and M. Bhatia, “Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-κB pathway,” Journal of Leukocyte Biology, vol. 81, no. 5, pp. 1322–1332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Li, M. Bhatia, Y. Z. Zhu et al., “Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse,” FASEB Journal, vol. 19, no. 9, pp. 1196–1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Collin, F. B. M. Anuar, O. Murch, M. Bhatia, P. K. Moore, and C. Thiemermann, “Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia,” British Journal of Pharmacology, vol. 146, no. 4, pp. 498–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Puneet, A. Hegde, S. W. Ng et al., “Preprotachykinin-A gene products are key mediators of lung injury in polymicrobial sepsis,” Journal of Immunology, vol. 176, no. 6, pp. 3813–3820, 2006. View at Google Scholar · View at Scopus
  75. A. Hegde, H. Zhang, S. M. Moochhala, and M. Bhatia, “Neurokinin-1 receptor antagonist treatment protects mice against lung injury in polymicrobial sepsis,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 678–685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. W. N. Siaw, H. Zhang, A. Hegde, and M. Bhatia, “Role of preprotachykinin-A gene products on multiple organ injury in LPS-induced endotoxemia,” Journal of Leukocyte Biology, vol. 83, no. 2, pp. 288–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Hegde, M. Uttamchandani, S. M. Moochhala, and M. Bhatia, “Plasma cytokine profiles in Preprotachykinin-A knockout mice subjected to polymicrobial sepsis,” Molecular Medicine, vol. 16, no. 1-2, pp. 45–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Hegde, R. Tamizhselvi, J. Manikandan, A. J. Melendez, S. M. Moochhala, and M. Bhatia, “Substance P in polymicrobial sepsis: molecular fingerprint of lung injury in preprotachykinin-A-/- mice,” Molecular Medicine, vol. 16, no. 5-6, pp. 188–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Hegde, Y. H. Koh, S. M. Moochhala, and M. Bhatia, “Neurokinin-1 receptor antagonist treatment in polymicrobial sepsis: molecular insights,” International Journal of Inflammation, vol. 2010, Article ID 601098, 10 pages, 2010. View at Publisher · View at Google Scholar
  80. H. Zhang, A. Hegde, W. N. Siaw, S. Adhikari, S. M. Moochhala, and M. Bhatia, “Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury,” Journal of Immunology, vol. 179, no. 6, pp. 4153–4160, 2007. View at Google Scholar · View at Scopus
  81. S. F. Ang, S. M. Moochhala, and M. Bhatia, “Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis,” Critical Care Medicine, vol. 38, no. 2, pp. 619–628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. F. Ang, S. M. Moochhala, P. A. MacAry et al., “Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-κB signaling,” PLoS ONE, vol. 6, no. 9, Article ID e24535, 2011. View at Google Scholar
  83. S. F. Ang, S. W. Sio, S. M. Moochhala et al., “Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation,” Journal of Immunology, vol. 187, no. 9, pp. 4778–4787, 2011. View at Google Scholar
  84. D. Church, S. Elsayed, O. Reid, B. Winston, and R. Lindsay, “Burn wound infections,” Clinical Microbiology Reviews, vol. 19, no. 2, pp. 403–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Hettiaratchy and P. Dziewulski, “ABC of burns: pathophysiology and types of burns,” British Medical Journal, vol. 328, no. 7453, pp. 1427–1429, 2004. View at Google Scholar · View at Scopus
  86. F. W. Endorf and D. Ahrenholz, “Burn management,” Current Opinion in Critical Care, vol. 17, no. 6, pp. 601–605, 2011. View at Google Scholar
  87. J. Zhang, S. W. S. Sio, S. Moochhala, and M. Bhatia, “Role of hydrogen sulfide in severe burn injury-induced inflammation in mice,” Molecular Medicine, vol. 16, no. 9-10, pp. 417–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. S. W. S. Sio, M. K. Puthia, J. Lu, S. Moochhala, and M. Bhatia, “The neuropeptide substance P is a critical mediator of burn-induced acute lung injury,” Journal of Immunology, vol. 180, no. 12, pp. 8333–8341, 2008. View at Google Scholar · View at Scopus
  89. S. W. S. Sio, S. Moochhala, J. Lu, and M. Bhatia, “Early protection from burn-induced acute lung injury by deletion of preprotachykinin-A gene,” American Journal of Respiratory and Critical Care Medicine, vol. 181, no. 1, pp. 36–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. S. W. S. Sio, S. F. Ang, J. Lu, S. Moochhala, and M. Bhatia, “Substance p upregulates cyclooxygenase-2 and prostaglandin E metabolite by activating ERK1/2 and NF-κB in a mouse model of burn-induced remote Acute lung injury,” Journal of Immunology, vol. 185, no. 10, pp. 6265–6276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. M. J. Plant, P. W. Jones, J. Saklatvala, W. E. R. Ollier, and P. T. Dawes, “Patterns of radiological progression in early rheumatoid arthritis: results of an 8 year prospective study,” Journal of Rheumatology, vol. 25, no. 3, pp. 417–426, 1998. View at Google Scholar · View at Scopus
  92. D. Symmons, G. Turner, R. Webb et al., “The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century,” Rheumatology, vol. 41, no. 7, pp. 793–800, 2002. View at Google Scholar · View at Scopus
  93. D. L. Scott, D. A. Willoughby, and D. R. Blake, “Molecular insights into rheumatoid arthritis,” Molecular Aspects of Medicine, vol. 12, no. 5, pp. 341–394, 1991. View at Publisher · View at Google Scholar · View at Scopus
  94. D. M. F. M. Van der Heijde, “Joint erosions and patients with early rheumatoid arthritis,” British Journal of Rheumatology, vol. 34, no. 2, pp. 74–78, 1995. View at Google Scholar · View at Scopus
  95. M. Bhatia, J. Sidhapuriwala, S. M. Moochhala, and P. K. Moore, “Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat,” British Journal of Pharmacology, vol. 145, no. 2, pp. 141–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Kloesch, M. Liszt, D. Krehan et al., “High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients,” Immunology Letters, vol. 141, no. 2, pp. 197–203, 2012. View at Google Scholar
  97. B. Fox, J. T. Schantz, R. Haigh et al., “Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint?” Journal of Cellular and Molecular Medicine, vol. 16, no. 4, pp. 896–910, 2012. View at Google Scholar
  98. M. Decramer, W. Janssens, and M. Miravitlles, “Chronic obstructive pulmonary disease,” Lancet, vol. 379, no. 9823, pp. 1341–1351, 2012. View at Google Scholar
  99. Y. H. Chen, W. Z. Yao, B. Geng et al., “Endogenous hydrogen sulfide in patients with COPD,” Chest, vol. 128, no. 5, pp. 3205–3211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Bhatia, J. N. Sidhapuriwala, A. Sparatore, and P. K. Moore, “Treatment with H2S-releasing diclofenac protects mice against acute pancreatitis-associated lung injury,” Shock, vol. 29, no. 1, pp. 84–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Sidhapuriwala, L. Li, A. Sparatore, M. Bhatia, and P. K. Moore, “Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat,” European Journal of Pharmacology, vol. 569, no. 1-2, pp. 149–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Li, G. Rossoni, A. Sparatore, L. C. Lee, P. Del Soldato, and P. K. Moore, “Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative,” Free Radical Biology and Medicine, vol. 42, no. 5, pp. 706–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. Q. Wang, H. R. Liu, Q. Mu, P. Rose, and Y. Z. Zhu, “S-propargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway,” Journal of Cardiovascular Pharmacology, vol. 54, no. 2, pp. 139–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Li, M. Whiteman, Y. Y. Guan et al., “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation, vol. 117, no. 18, pp. 2351–2360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Li, M. Salto-Tellez, C. H. Tan, M. Whiteman, and P. K. Moore, “GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat,” Free Radical Biology and Medicine, vol. 47, no. 1, pp. 103–113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Whiteman, L. Li, P. Rose, C. H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxidants and Redox Signaling, vol. 12, no. 10, pp. 1147–1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. J. N. Sidhapuriwala, A. Hegde, and A. D. Ang, “Effects of S-propargyl-cysteine (SPRC) in caerulein-induced acute pancreatitis in mice,” PLoS ONE, vol. 7, no. 3, Article ID e32574, 2012. View at Google Scholar
  108. Y. H. Chen, R. Wu, B. Geng et al., “Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma,” Cytokine, vol. 45, no. 2, pp. 117–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. E. Ekundi-Valentim, K. T. Santos, E. A. Camargo et al., “Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat: research paper,” British Journal of Pharmacology, vol. 159, no. 7, pp. 1463–1474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. L. L. Pan, X. H. Liu, Q. H. Gong, and Y. Z. Zhu, “S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharideinduced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism,” Amino Acids, vol. 41, no. 1, pp. 205–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Kubo, I. Doe, Y. Kurokawa, and A. Kawabata, “Hydrogen sulfide causes relaxation in mouse bronchial smooth muscle,” Journal of Pharmacological Sciences, vol. 104, no. 4, pp. 392–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. N. R. Sodha, R. T. Clements, J. Feng et al., “Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury,” Journal of Thoracic and Cardiovascular Surgery, vol. 138, no. 4, pp. 977–984, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Lee, C. Schwab, S. Yu, E. McGeer, and P. L. McGeer, “Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide,” Neurobiology of Aging, vol. 30, no. 10, pp. 1523–1534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Fiorucci, E. Antonelli, E. Distrutti et al., “Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs,” Gastroenterology, vol. 129, no. 4, pp. 1210–1224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. I. Hirata, Y. Naito, T. Takagi et al., “Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice,” Digestive Diseases and Sciences, vol. 56, no. 5, pp. 1379–1386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. Q. Sun, R. Collins, S. Huang et al., “Structural basis for the inhibition mechanism of human cystathionine γ-lyase, an enzyme responsible for the production of H2S,” Journal of Biological Chemistry, vol. 284, no. 5, pp. 3076–3085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Burnett, P. Marcotte, and C. Walsh, “Mechanism-based inactivation of pig heart L-alanine transaminase by L-propargylglycine. Half-site reactivity,” Journal of Biological Chemistry, vol. 255, no. 8, pp. 3487–3491, 1980. View at Google Scholar · View at Scopus
  118. E. S. Cho, J. Hovanec-Brown, R. J. Tomanek, and L. D. Stegink, “Propargylglycine infusion effects on tissue glutathione levels, plasma amino acid concentrations and tissue morphology in parenterally-fed growing rats,” Journal of Nutrition, vol. 121, no. 6, pp. 785–794, 1991. View at Google Scholar · View at Scopus
  119. A. Kawaji, K. Yamauchi, S. Fujii, R. Natsuki, E. Takabatake, and Y. Yamaura, “Effects of mushroom toxins on glycogenolysis; comparison of toxicity of phalloidin, α-amanitin and DL-propargylglycine in isolated rat hepatocytes,” Journal of Pharmacobio-Dynamics, vol. 15, no. 3, pp. 107–112, 1992. View at Google Scholar · View at Scopus
  120. S. Yu, K. Sugahara, K. Nakayama, S. Awata, and H. Kodama, “Accumulation of cystathionine, cystathionine ketimine, and perhydro-1,4-thiazepine-3,5-dicarboxylic acid in whole brain and various regions of the brain of D,L-propargylglycine-treated rats,” Metabolism, vol. 49, no. 8, pp. 1025–1029, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. R. Konno, M. Ikeda, K. Yamaguchi, Y. Ueda, and A. Niwa, “Nephrotoxicity of D-propargylglycine in mice,” Archives of Toxicology, vol. 74, no. 8, pp. 473–479, 2000. View at Publisher · View at Google Scholar · View at Scopus
  122. I. Ishii, N. Akahoshi, H. Yamada, S. Nakano, T. Izumi, and M. Suematsu, “Cystathionine γ-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury,” Journal of Biological Chemistry, vol. 285, no. 34, pp. 26358–26368, 2010. View at Publisher · View at Google Scholar · View at Scopus