Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012 (2012), Article ID 478631, 22 pages
http://dx.doi.org/10.6064/2012/478631
Review Article

Direct Acting Antivirals for the Treatment of Chronic Viral Hepatitis

Section of Hepatology and Gastroenterology, Department of Medicine, Imperial College, St Mary’s Campus, London W2 1PG, UK

Received 17 September 2012; Accepted 8 October 2012

Academic Editors: M. Clementi and W. Vogel

Copyright © 2012 Peter Karayiannis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. Lee, “Hepatitis B virus infection,” New England Journal of Medicine, vol. 337, no. 24, pp. 1733–1745, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. “Global surveillance and control of hepatitis C,” Journal of Viral Hepatitis, vol. 6, no. 1, pp. 35–47, 1999. View at Publisher · View at Google Scholar
  3. T. M. Block, H. Guo, and J. T. Guo, “Molecular Virology of Hepatitis B Virus for Clinicians,” Clinics in Liver Disease, vol. 11, no. 4, pp. 685–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. F. Perz, G. L. Armstrong, L. A. Farrington, Y. J. F. Hutin, and B. P. Bell, “The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide,” Journal of Hepatology, vol. 45, no. 4, pp. 529–538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hatzakis, S. Wait, J. Bruix et al., “The state of hepatitis B and C in Europe: report from the hepatitis B and C summit conference,” Journal of Viral Hepatitis, vol. 18, supplement 1, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Seeger and W. S. Mason, “Hepatitis B virus biology,” Microbiology and Molecular Biology Reviews, vol. 64, no. 1, pp. 51–68, 2000. View at Google Scholar · View at Scopus
  7. D. Ganem and R. J. Schneider, “Hepadnaviridae: the viruses and their replication,” in Fields Virology, D. M. Knipe, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, and S. E. Straus, Eds., pp. 2923–2969, Lippincott Williams & Wilkins, Philadelphia, 4th edition, 2001. View at Google Scholar
  8. H. Norder, A. M. Courouce, and L. O. Magnius, “Molecular basis of hepatitis B virus serotype variations within the four major subtypes,” Journal of General Virology, vol. 73, no. 12, pp. 3141–3145, 1992. View at Google Scholar · View at Scopus
  9. H. Norder, A. M. Courouce, and L. O. Magnius, “Complete genomes, phylogenetic relatedness, and structural proteins of six strains of the hepatitis B virus, four of which represent two new genotypes,” Virology, vol. 198, no. 1, pp. 489–503, 1994. View at Google Scholar · View at Scopus
  10. M. Lindh, A. S. Andersson, and A. Gusdal, “Genotypes, nt 1858 variants, and geographic origin of hepatitis B virus—large-scale analysis using a new genotyping method,” Journal of Infectious Diseases, vol. 175, no. 6, pp. 1285–1293, 1997. View at Google Scholar · View at Scopus
  11. H. Naumann, S. Schaefer, C. F. T. Yoshida, A. M. C. Gaspar, R. Repp, and W. H. Gerlich, “Identification of a new hepatitis B virus (HBV) genotype from Brazil that expresses HBV surface antigen subtype adw4,” Journal of General Virology, vol. 74, no. 8, pp. 1627–1632, 1993. View at Google Scholar · View at Scopus
  12. C. J. Chu, E. B. Keeffe, S. H. Han et al., “Hepatitis B virus genotypes in the United States: results of a nationwide study,” Gastroenterology, vol. 125, no. 2, pp. 444–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Nassal, “Hepatitis B viruses: reverse transcription a different way,” Virus Research, vol. 134, no. 1-2, pp. 235–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Neurath, S. B. H. Kent, N. Strick, and K. Parker, “Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus,” Cell, vol. 46, no. 3, pp. 429–436, 1986. View at Google Scholar · View at Scopus
  15. A. R. Neurath, B. Seto, and N. Strick, “Antibodies to synthetic peptides from the preS1 region of the hepatitis B virus (HBV) envelope (env) protein are virus-neutralizing and protective,” Vaccine, vol. 7, no. 3, pp. 234–236, 1989. View at Google Scholar · View at Scopus
  16. N. Paran, B. Geiger, and Y. Shaul, “HBV infection of cell culture: evidence for multivalent and cooperative attachment,” EMBO Journal, vol. 20, no. 16, pp. 4443–4453, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. S. Tuttleman, C. Pourcel, and J. Summers, “Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells,” Cell, vol. 47, no. 3, pp. 451–460, 1986. View at Google Scholar · View at Scopus
  18. S. Locarnini and C. Birch, “Antiviral chemotherapy for chronic hepatitis B infection: lessons learned from treating HIV-infected patients,” Journal of Hepatology, vol. 30, no. 3, pp. 536–550, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Summers and W. S. Mason, “Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate,” Cell, vol. 29, no. 2, pp. 403–415, 1982. View at Google Scholar · View at Scopus
  20. A. Kramvis and M. C. Kew, “Structure and function of the encapsidation signal of hepadnaviridae,” Journal of Viral Hepatitis, vol. 5, no. 6, pp. 357–367, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Nassal and H. Schaller, “Hepatitis B virus replication—an update,” Journal of Viral Hepatitis, vol. 3, no. 5, pp. 217–226, 1996. View at Google Scholar · View at Scopus
  22. F. Zoulim and C. Seeger, “Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase,” Journal of Virology, vol. 68, no. 1, pp. 6–13, 1994. View at Google Scholar · View at Scopus
  23. M. Weber, V. Bronsema, H. Bartos, A. Bosserhoff, R. Bartenschlager, and H. Schaller, “Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription,” Journal of Virology, vol. 68, no. 5, pp. 2994–2999, 1994. View at Google Scholar · View at Scopus
  24. R. A. Crowther, N. A. Kiselev, B. Bottcher et al., “Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy,” Cell, vol. 77, no. 6, pp. 943–950, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Gerelsaikhan, J. E. Tavis, and V. Bruss, “Hepatitis B virus nucleocapsid envelopment does not occur without genomic DNA synthesis,” Journal of Virology, vol. 70, no. 7, pp. 4269–4274, 1996. View at Google Scholar · View at Scopus
  26. L. O. Magnius and H. Norder, “Subtypes, genotypes and molecular epidemiology of the hepatitis B virus as reflected by sequence variability of the S-gene,” Intervirology, vol. 38, no. 1-2, pp. 24–34, 1995. View at Google Scholar · View at Scopus
  27. L. Mimms, “Hepatitis B virus escape mutants: 'pushing the envelope' of chronic hepatitis B virus infection,” Hepatology, vol. 21, no. 3, pp. 884–887, 1995. View at Google Scholar · View at Scopus
  28. W. F. Carman, M. R. Jacyna, S. Hadziyannis et al., “Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection,” Lancet, vol. 2, no. 8663, pp. 588–591, 1989. View at Google Scholar · View at Scopus
  29. M. R. Brunetto, M. Stemler, F. Schodel et al., “Identification of HBV variants which cannot produce precore derived HBeAg and may be responsible for severe hepatitis,” Italian Journal of Gastroenterology, vol. 21, no. 3, pp. 151–154, 1989. View at Google Scholar · View at Scopus
  30. P. P. Scaglioni, M. Melegari, and J. R. Wands, “Biologic properties of hepatitis B viral genomes with mutations in the precore promoter and precore open reading frame,” Virology, vol. 233, no. 2, pp. 374–381, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Okamoto, F. Tsuda, Y. Akahane et al., “Hepatitis B virus with mutations in the core promoter for an e antigen- negative phenotype in carriers with antibody to e antigen,” Journal of Virology, vol. 68, no. 12, pp. 8102–8110, 1994. View at Google Scholar · View at Scopus
  32. V. E. Buckwold, Z. Xu, M. Chen, T. S. B. Yen, and J. H. Ou, “Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication,” Journal of Virology, vol. 70, no. 9, pp. 5845–5851, 1996. View at Google Scholar · View at Scopus
  33. P. Karayiannis, M. J. F. Fowler, and A. S. F. Lok, “Detection of serum HBV-DNA by molecular hybridisation. Correlation with HBeAg/anti-HBe status, racial origin, liver histology and hepatocellular carcinoma,” Journal of Hepatology, vol. 1, no. 2, pp. 99–106, 1985. View at Google Scholar · View at Scopus
  34. S. Hadziyannis, “Hepatitis B e antigen negative chronic hepatitis B: from clinical recognition to pathogenesis and treatment,” Viral Hepatitis Reviews, vol. 1, pp. 7–36, 1985. View at Google Scholar
  35. J. P. Zarski, P. Marcellin, M. Cohard, J. M. Lutz, C. Bouche, and A. Rais, “Comparison of anti-HBe-positive and HBe-antigen-positive chronic hepatitis B in France,” Journal of Hepatology, vol. 20, no. 5, pp. 636–640, 1994. View at Google Scholar · View at Scopus
  36. M. R. Brunetto, M. M. Giarin, F. Oliveri et al., “Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 10, pp. 4186–4190, 1991. View at Google Scholar · View at Scopus
  37. H. S. Margolis, M. J. Alter, and S. C. Hadler, “Hepatitis B: evolving epidemiology and implications for control,” Seminars in Liver Disease, vol. 11, no. 2, pp. 84–92, 1991. View at Google Scholar · View at Scopus
  38. P. Coursaget, B. Yvonnet, and J. Chotard, “Age- and sex-related study of hepatitis B virus chronic carrier state in infants from an endemic area (Senegal),” Journal of Medical Virology, vol. 22, no. 1, pp. 1–5, 1987. View at Google Scholar · View at Scopus
  39. B. J. McMahon, W. L. M. Alward, and D. B. Hall, “Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state,” Journal of Infectious Diseases, vol. 151, no. 4, pp. 599–603, 1985. View at Google Scholar · View at Scopus
  40. N. C. Tassopoulos, G. J. Papaevangelou, and M. H. Sjogren, “Natural history of acute hepatitis B surface antigen-positive hepatitis in Greek adults,” Gastroenterology, vol. 92, no. 6, pp. 1844–1850, 1987. View at Google Scholar · View at Scopus
  41. A. A. Evans and W. T. London, “Epidemiology of hepatitis B,” in Viral Hepatitis, A. J. Zuckerman and H. C. Thomas, Eds., pp. 107–114, Churchill livingstone, London, UK, 1998. View at Google Scholar
  42. S. J. Hadziyannis and G. V. Papatheodoridis, “Hepatitis B e antigen-negative chronic hepatitis B: natural history and treatment,” Seminars in Liver Disease, vol. 26, no. 2, pp. 130–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. C. L. Lai, H. J. Lin, E. K. Yeoh, A. S. F. Lok, P. C. Wu, and C. Y. Yeung, “Placebo-controlled trial of recombinant α2-interferon in Chinese HBsAg-carrier children,” Lancet, vol. 2, no. 8564, pp. 877–880, 1987. View at Google Scholar · View at Scopus
  44. A. S. F. Lok, C. L. Lai, P. C. Wu et al., “Treatment of chronic hepatitis B with interferon: experience in Asian patients,” Seminars in Liver Disease, vol. 9, no. 4, pp. 249–253, 1989. View at Google Scholar · View at Scopus
  45. T. Nguyen, P. Desmond, and S. Locarnini, “The role of quantitative hepatitis B serology in the natural history and management of chronic hepatitis B,” Hepatology International, supplement 1, pp. 5–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Jaroszewicz, B. C. Serrano, K. Wursthorn et al., “Hepatitis B surface antigen (HBsAg) levels in the natural history of hepatitis B virus (HBV)-infection: a European perspective,” Journal of Hepatology, vol. 52, no. 4, pp. 514–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. R. P. Perrillo, “Treatment of chronic hepatitis B with interferon: experience in western countries,” Seminars in Liver Disease, vol. 9, no. 4, pp. 240–248, 1989. View at Google Scholar · View at Scopus
  48. P. Karayiannis, “Serum HBsAg levels and their utility as a predictor of sustained virological response after antiviral treatment,” Hepatitis Monthly, vol. 12, no. 7, pp. 420–422, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Fattovich, F. Bortolotti, and D. Francesco, “Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors,” Journal of Hepatology, vol. 48, no. 2, pp. 335–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. G. K. K. Lau, T. Piratvisuth, X. L. Kang et al., “Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B,” New England Journal of Medicine, vol. 352, no. 26, pp. 2682–2695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Marcellin, G. K. K. Lau, F. Bonino et al., “Peginterferon Alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B,” New England Journal of Medicine, vol. 351, no. 12, pp. 1206–1217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. H. L. A. Janssen, M. Van Zonneveld, H. Senturk et al., “Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial,” Lancet, vol. 365, no. 9454, pp. 123–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. H. L. Y. Chan, N. W. Y. Leung, A. Y. Hui et al., “A randomized, controlled trial of combination therapy for chronic hepatitis B: comparing pegylated interferon-α2b and lamivudine with lamivudine alone,” Annals of Internal Medicine, vol. 142, no. 4, pp. 240–250, 2005. View at Google Scholar · View at Scopus
  54. E. H. C. J. Buster, H. J. Flink, Y. Cakaloglu et al., “Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginterferon α-2b,” Gastroenterology, vol. 135, no. 2, pp. 459–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Marcellin, F. Bonino, G. K. K. Lau et al., “Sustained response of hepatitis B e antigen-negative patients 3 years after treatment with peginterferon Alfa-2a,” Gastroenterology, vol. 136, no. 7, pp. 2169–2179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. N. C. Tassopoulos, R. Volpes, G. Pasture et al., “Efficacy of lamivudine in patients with hepatitis B e antigen- negative/hepatitis B virus DNA-positive (precore mutant) chronic hepatitis B,” Hepatology, vol. 29, no. 3, pp. 889–896, 1999. View at Google Scholar · View at Scopus
  57. F. Bonino, P. Marcellin, G. K. K. Lau et al., “Predicting response to peginterferon α-2a, lamivudine and the two combined for HBeAg-negative chronic hepatitis B,” Gut, vol. 56, no. 5, pp. 699–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Moucari, V. Mackiewicz, O. Lada et al., “Early serum HBsAg drop: a strong predictor of sustained virological response to pegylated interferon alfa-2a in HBeAg-negative patients,” Hepatology, vol. 49, no. 4, pp. 1151–1157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. R. Brunetto, F. Moriconi, F. Bonino et al., “Hepatitis B virus surface antigen levels: a guide to sustained response to peginterferon alfa-2a in HBeAg-negative chronic hepatitis B,” Hepatology, vol. 49, no. 4, pp. 1141–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Moraleda, J. Saputelli, C. E. Aldrich, D. Averett, L. Condreay, and W. S. Mason, “Lack of effect of antiviral therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus,” Journal of Virology, vol. 71, no. 12, pp. 9392–9399, 1997. View at Google Scholar · View at Scopus
  61. N. Cammack, P. Rouse, C. L. P. Marr et al., “Cellular metabolism of (−) enantiomeric 2′-deoxy-3′-thiacytidine,” Biochemical Pharmacology, vol. 43, no. 10, pp. 2059–2064, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. C. N. Chang, V. Skalski, J. H. Zhou, and Y. C. Cheng, “Biochemical pharmacology of (+)- and (−)-2′,3′-dideoxy-3′-thiacytidine as anti-hepatitis B virus agents,” Journal of Biological Chemistry, vol. 267, no. 31, pp. 22414–22420, 1992. View at Google Scholar · View at Scopus
  63. S. L. Doong, C. H. Tsai, R. F. Schinazi, D. C. Liotta, and Y. C. Cheng, “Inhibition of the replication of hepatitis B virus in vitro by 2′,3′-dideoxy-3′-thiacytidine and related analogues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 19, pp. 8495–8499, 1991. View at Publisher · View at Google Scholar · View at Scopus
  64. A. S.-F. Lok, M. Hussain, C. Cursano et al., “Evolution of hepatitis B virus polymerase gene mutations in hepatitis B e antigen-negative patients receiving lamivudine therapy,” Hepatology, vol. 32, no. 5, pp. 1145–1153, 2000. View at Google Scholar · View at Scopus
  65. S. W. Cho, K. B. Hahm, and J. H. Kim, “Reversion from precore/core promoter mutants to wild-type hepatitis B virus during the course of lamivudine therapy,” Hepatology, vol. 32, no. 5, pp. 1163–1169, 2000. View at Google Scholar · View at Scopus
  66. F. Zoulim and C. Trépo, “Is lamivudine effective on precore/core promoter mutants of hepatitis B virus?” Hepatology, vol. 32, no. 5, pp. 1172–1174, 2000. View at Google Scholar · View at Scopus
  67. R. Y. M. Chen, R. Edwards, T. Shaw et al., “Effect of the G1896A precore mutation on drug sensitivity and replication yield of lamivudineresistant HBV in vitro,” Hepatology, vol. 37, no. 1, pp. 27–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. J. L. Dienstag, E. R. Schiff, T. L. Wright et al., “Lamivudine as initial treatment for chronic hepatitis B in the United States,” New England Journal of Medicine, vol. 341, no. 17, pp. 1256–1263, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. C. L. Lai, R. N. Chien, N. W. Y. Leung et al., “A one-year trial of lamivudine for chronic hepatitis B,” New England Journal of Medicine, vol. 339, no. 2, pp. 61–68, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. S. W. Schalm, D. F. Gray, J. Heathcote et al., “Lamivudine and alpha interferon combination treatment of patients with chronic hepatitis B infection: a randomised trial,” Gut, vol. 46, no. 4, pp. 562–568, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. F. Liaw, N. W. Y. Leung, T. T. Chang et al., “Effects of extended lamivudine therapy in asian patients with chronic hepatitis B,” Gastroenterology, vol. 119, no. 1, pp. 172–180, 2000. View at Google Scholar · View at Scopus
  72. N. W. Y. Leung, C. L. Lai, T. T. Chang et al., “Extended lamivudine treatment in patients with chronic hepatitis B enhances hepatitis B e antigen seroconversion rates: results after 3 years of therapy,” Hepatology, vol. 33, no. 6, pp. 1527–1532, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. J. G. P. Reijnders, M. J. Perquin, N. Zhang, B. E. Hansen, and H. L. A. Janssen, “Nucleos(t)ide analogues only induce temporary hepatitis B e antigen seroconversion in most patients with chronic hepatitis B,” Gastroenterology, vol. 139, no. 2, pp. 491–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. B. C. Song, D. J. Suh, H. C. Lee, Y. H. Chung, and Y. S. Lee, “Hepatitis B e antigen seroconversion after lamivudine therapy is not durable in patients with chronic hepatitis B in Korea,” Hepatology, vol. 32, no. 4, pp. 803–806, 2000. View at Google Scholar · View at Scopus
  75. A. S. F. Lok, “The maze of treatments for hepatitis B,” New England Journal of Medicine, vol. 352, no. 26, pp. 2743–2746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. E. B. Keeffe, D. T. Dieterich, S. H. B. Han et al., “A Treatment algorithm for the management of chronic hepatitis B virus infection in the United States: 2008 Update,” Clinical Gastroenterology and Hepatology, vol. 6, no. 12, pp. 1315–1341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Rizzetto, “Efficacy of lamivudine in HBeAg-negative chronic hepatitis B,” Journal of Medical Virology, vol. 66, no. 4, pp. 435–451, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Santantonio, M. Mazzola, T. Iacovazzi, A. Miglietta, A. Guastadisegni, and G. Pastore, “Long-term follow-up of patients with anti-HBe/HBV DNA-positive chronic hepatitis B treated for 12 months with lamivudine,” Journal of Hepatology, vol. 32, no. 2, pp. 300–306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. S. J. Hadziyannis, G. V. Papatheodoridis, E. Dimou, A. Laras, and C. Papaioannou, “Efficacy of long-term lamivudine monotherapy in patients with hepatitis B e antigen-negative chronic hepatitis B,” Hepatology, vol. 32, no. 4 I, pp. 847–851, 2000. View at Google Scholar · View at Scopus
  80. D. T. Lau, M. Farooq Khokhar, E. Doo et al., “Long-term therapy of chronic hepatitis B with lamivudine,” Hepatology, vol. 32, no. 4 I, pp. 828–834, 2000. View at Google Scholar · View at Scopus
  81. M. Rizzetto, R. Volpes, and A. Smedile, “Response of pre-core mutant chronic hepatitis B infection to lamivudine,” Journal of Medical Virology, vol. 61, no. 3, pp. 398–402, 2000. View at Google Scholar · View at Scopus
  82. G. V. Papatheodoridis, E. Dimou, A. Laras, V. Papadimitropoulos, and S. J. Hadziyannis, “Course of virologic breakthroughs under long-term lamivudine in HBeAg-negative precore mutant HBV liver disease,” Hepatology, vol. 36, no. 1, pp. 219–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Scotto, V. Fazio, F. Campanozzi, and A. D'Adduzio, “Efficacy of treatment with lamivudine in patients with chronic active e- minus variant hepatitis B virus infection: a nonrandomized, open-label study,” Current Therapeutic Research, vol. 61, no. 6, pp. 321–330, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Suzuki, H. Kumada, K. Ikeda et al., “Histological changes in liver biopsies after one year of lamivudine treatment in patients with chronic hepatitis B infection,” Journal of Hepatology, vol. 30, no. 5, pp. 743–748, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. Y.-O. Kweon, Z. D. Goodman, J. L. Dienstag et al., “Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B,” Journal of Hepatology, vol. 35, no. 6, pp. 749–755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. F. Liaw, J. J. Sung, W. C. Chow et al., “Lamivudine for patients with chronic hepatitis B and advanced liver disease,” The New England Journal of Medicine, vol. 351, pp. 1521–1531, 2004. View at Google Scholar
  87. M. F. Yuen, W. K. Seto, D. H. F. Chow et al., “Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease,” Antiviral Therapy, vol. 12, no. 8, pp. 1295–1303, 2007. View at Google Scholar · View at Scopus
  88. M. Buti, M. Cotrina, R. Jardi et al., “Two years of lamivudine therapy in anti-HBe-positive patients with chronic hepatitis B,” Journal of Viral Hepatitis, vol. 8, no. 4, pp. 270–275, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. R. N. Chien, Y. F. Liaw, and M. Atkins, “Pretherapy alanine transaminase level as a determinant for hepatitis B e antigen seroconversion during lamivudine therapy in patients with chronic hepatitis B,” Hepatology, vol. 30, no. 3, pp. 770–774, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. R. P. Perrillo, S. W. Schalm, E. R. Schiff et al., “Predictors of HBsAg seroconversion in chronic hepatitis B patients treated with lamivudine,” Hepatology, vol. 30, article 317A, 1999. View at Google Scholar
  91. Y. F. Liaw, R. N. Chien, C. T. Yeh, S. L. Tsai, and C. M. Chu, “Acute exacerbation and hepatitis B virus clearance after emergence of YMDD motif mutation during lamivudine therapy,” Hepatology, vol. 30, no. 2, pp. 567–572, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. M. M. Bartholomew, R. W. Jansen, L. J. Jeffers et al., “Hepatitis-B-virus resistance to lamivudine given for recurrent infection after orthotopic liver transplantation,” Lancet, vol. 349, no. 9044, pp. 20–22, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. O. Poch, I. Sauvaget, M. Delarue, and N. Tordo, “Identification of four conserved motifs among the RNA-dependent polymerase encoding elements,” EMBO Journal, vol. 8, no. 12, pp. 3867–3874, 1989. View at Google Scholar · View at Scopus
  94. M. I. Allen, M. Deslauriers, C. Webster Andrews et al., “Identification and characterization of mutations in hepatitis B virus resistant to lamivudine,” Hepatology, vol. 27, no. 6, pp. 1670–1677, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. K. P. Fischer and D. L. J. Tyrrell, “Generation of duck hepatitis B virus polymerase mutants through site- directed mutagenesis which demonstrate resistance to lamivudine [(−)-β-L-2′,3′-dideoxy-3′-thiacytidine] in vitro,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 8, pp. 1957–1960, 1996. View at Google Scholar · View at Scopus
  96. K. Chayama, Y. Suzuki, M. Kobayashi et al., “Emergence and takeover of YMDD motif mutant hepatitis B virus during long-term lamivudine therapy and re-takeover by wild type after cessation of therapy,” Hepatology, vol. 27, no. 6, pp. 1711–1716, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Honkoop, H. G. M. Niesters, R. A. M. De Man, A. D. M. E. Osterhaus, and S. W. Schalm, “Lamivudine resistance in immunocompetent chronic hepatitis B. Incidence and patterns,” Journal of Hepatology, vol. 26, no. 6, pp. 1393–1395, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Ling, D. Mutimer, M. Ahmed et al., “Selection of mutations in the hepatitis B virus polymerase during therapy of transplant recipients with lamivudine,” Hepatology, vol. 24, no. 3, pp. 711–713, 1996. View at Publisher · View at Google Scholar · View at Scopus
  99. G. A. Tipples, M. M. Ma, K. P. Fischer, V. G. Bain, N. M. Kneteman, and D. L. J. Tyrrell, “Mutation in HBV RNA-dependent DNA polymerase confers resistance to lamivudine in vivo,” Hepatology, vol. 24, no. 3, pp. 714–717, 1996. View at Publisher · View at Google Scholar · View at Scopus
  100. H. G. M. Niesters, P. Honkoop, E. B. Haagsma, R. A. De Man, S. W. Schalm, and A. D. M. E. Osterhaus, “Identification of more than one mutation in the hepatitis B virus polymerase gene arising during prolonged lamivudine treatment,” Journal of Infectious Diseases, vol. 177, no. 5, pp. 1382–1385, 1998. View at Google Scholar · View at Scopus
  101. M. Melegari, P. P. Scaglioni, and J. R. Wands, “Hepatitis B virus mutants associated with 3TC and Famciclovir administration are replication defective,” Hepatology, vol. 27, no. 2, pp. 628–633, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. S. K. Ono, N. Kato, Y. Shiratori et al., “The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance,” Journal of Clinical Investigation, vol. 107, no. 4, pp. 449–455, 2001. View at Google Scholar · View at Scopus
  103. T. T. Aye, A. Bartholomeusz, T. Shaw et al., “Hepatitis B virus polymerase mutations during antiviral therapy in a patient following liver transplantation,” Journal of Hepatology, vol. 26, no. 5, pp. 1148–1153, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. H. L. Tillmann, C. Trautwein, T. Bock et al., “Mutational pattern of hepatitis B virus on sequential therapy with famciclovir and lamivudine in patients with hepatitis B virus reinfection occurring under HBIg immunoglobulin after liver transplantation,” Hepatology, vol. 30, no. 1, pp. 244–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. C. T. Yeh, R. N. Chien, C. M. Chu, and Y. F. Liaw, “Clearance of the original hepatitis B virus YMDD-motif mutants with emergence of distinct lamivudine-resistant mutants during prolonged lamivudine therapy,” Hepatology, vol. 31, no. 6, pp. 1318–1326, 2000. View at Google Scholar · View at Scopus
  106. S. Villet, C. Pichoud, G. Billioud et al., “Impact of hepatitis B virus rtA181V/T mutants on hepatitis B treatment failure,” Journal of Hepatology, vol. 48, no. 5, pp. 747–755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. R. A. Heijtink, G. A. De Wilde, J. Kruining et al., “Inhibitory effect of 9-(2-phosphonylmethoxyethyl)-adenine (PMEA) on human and duck hepatitis B virus infection,” Antiviral Research, vol. 21, no. 2, pp. 141–153, 1993. View at Publisher · View at Google Scholar · View at Scopus
  108. A. J. Nicoll, D. L. Colledge, J. J. Toole, P. W. Angus, R. A. Smallwood, and S. A. Locarnini, “Inhibition of duck hepatitis B virus replication by 9-(2- phosphonylmethoxyethyl)adenine, an acyclic phosphonate nucleoside analogue,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 12, pp. 3130–3135, 1998. View at Google Scholar · View at Scopus
  109. X. Xiong, C. Flores, H. Yang, J. J. Toole, and C. S. Gibbs, “Mutations in hepatitis B DNA polymerase associated with resistance to lamivudine do not confer resistance to adefovir in vitro,” Hepatology, vol. 28, no. 6, pp. 1669–1673, 1998. View at Google Scholar · View at Scopus
  110. R. Perrillo, E. Schiff, E. Yoshida et al., “Adefovir dipivoxil for the treatment of lamivudine-resistant hepatitis B mutants,” Hepatology, vol. 32, no. 1, pp. 129–134, 2000. View at Google Scholar · View at Scopus
  111. R. J. C. Gilson, K. B. Chopra, A. M. Newell et al., “A placebo-controlled phase I/II study of adefovir dipivoxil in patients with chronic hepatitis B virus infection,” Journal of Viral Hepatitis, vol. 6, no. 5, pp. 387–395, 1999. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Tsiang, J. F. Rooney, J. J. Toole, and C. S. Gibbs, “Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy,” Hepatology, vol. 29, no. 6, pp. 1863–1869, 1999. View at Publisher · View at Google Scholar · View at Scopus
  113. M. G. Peters, G. Singer, T. Howard et al., “Fulminant hepatic failure resulting from lamivudine- resistant hepatitis B virus in a renal transplant recipient: durable response after orthotopic liver transplantation on adefovir dipivoxil and hepatitis B immune globulin,” Transplantation, vol. 68, no. 12, pp. 1912–1914, 1999. View at Google Scholar · View at Scopus
  114. Y. Benhamou, M. Bochet, V. Thibault et al., “Safety and efficacy of adefovir dipivoxil in patients co-infected with HIV-1 and lamivudine-resistant hepatitis B virus: an open-label pilot study,” Lancet, vol. 358, no. 9283, pp. 718–723, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. D. Mutimer, B. H. Feraz-Neto, R. Harrison et al., “Acute liver graft failure due to emergence of lamivudine resistant hepatitis B virus: rapid resolution during treatment with adefovir,” Gut, vol. 49, no. 6, pp. 860–863, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. K. M. Walsh, T. Woodall, P. Lamy, D. G. D. Wight, S. Bloor, and G. J. M. Alexander, “Successful treatment with adefovir dipivoxil in a patient with fibrosing cholestatic hepatitis and lamivudine resistant hepatitis B virus,” Gut, vol. 49, no. 3, pp. 436–440, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Mukherjee and P. Marcellin, “Adefovir dipivoxil for hepatitis B e antigen-positive chronic hepatitis B,” New England Journal of Medicine, vol. 348, no. 24, p. 2468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. E. R. Schiff, C. L. Lai, S. Hadziyannis et al., “Adefovir dipivoxil therapy for lamivudine-resistant hepatitis B in pre- and post-liver transplantation patients,” Hepatology, vol. 38, no. 6, pp. 1419–1427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. S. J. Hadziyannis, N. C. Tassopoulos, E. J. Heathcote et al., “Adefovir dipivoxil for the treatment of hepatitis B e antigen-negative chronic hepatitis B,” New England Journal of Medicine, vol. 348, no. 9, pp. 800–807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  120. P. Angus, R. Vaughan, S. Xiong et al., “Resistance to adefovir dipivoxil therapy associated with the selection of a novel mutation in the HBV polymerase,” Gastroenterology, vol. 125, no. 2, pp. 292–297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. S. J. Hadziyannis, N. C. Tassopoulos, E. J. Heathcote et al., “Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis b for up to 5 years,” Gastroenterology, vol. 131, no. 6, pp. 1743–1751, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Seifer, R. K. Hamatake, R. J. Colonno, and D. N. Standring, “In vitro inhibition of hepadnavirus polymerases by the triphosphates of BMS-200475 and lobucavir,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 12, pp. 3200–3208, 1998. View at Google Scholar · View at Scopus
  123. E. V. Genovesi, L. Lamb, I. Medina et al., “Efficacy of the carbocyclic 2′-deoxyguanosine nucleoside BMS-200475 in the woodchuck model of hepatitis B virus infection,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 12, pp. 3209–3217, 1998. View at Google Scholar · View at Scopus
  124. S. F. Innaimo, M. Seifer, G. S. Bisacchi, D. N. Standring, R. Zahler, and R. J. Colonno, “Identification of BMS-200475 as a potent and selective inhibitor of hepatitis B virus,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 7, pp. 1444–1448, 1997. View at Google Scholar · View at Scopus
  125. C. L. Lai, M. Rosmawati, J. Lao et al., “Entecavir is superior to lamivudine in reducing hepatitis B virus DNA in patients with chronic hepatitis B infection,” Gastroenterology, vol. 123, no. 6, pp. 1831–1838, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. T. T. Chang, R. G. Gish, R. De Man et al., “A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B,” New England Journal of Medicine, vol. 354, no. 10, pp. 1001–1010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. N. Leung, C. Y. Peng, H. W. Hann et al., “Early hepatitis B virus DNA reduction in hepatitis B e antigen-positive patients with chronic hepatitis B: a randomized international study of entecavir versus adefovir,” Hepatology, vol. 49, no. 1, pp. 72–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. D. Shouval, C. L. Lai, T. T. Chang et al., “Relapse of hepatitis B in HBeAg-negative chronic hepatitis B patients who discontinued successful entecavir treatment: the case for continuous antiviral therapy,” Journal of Hepatology, vol. 50, no. 2, pp. 289–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. C. L. Lai, D. Shouval, A. S. Lok et al., “Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B,” New England Journal of Medicine, vol. 354, no. 10, pp. 1011–1020, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. T. T. Chang, C. L. Lai, S. K. Yoon et al., “Entecavir treatment for up to 5 years in patients with hepatitis b e antigen-positive chronic hepatitis B,” Hepatology, vol. 51, no. 2, pp. 422–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. T. T. Chang, Y. F. Liaw, S. S. Wu et al., “Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B,” Hepatology, vol. 52, no. 3, pp. 886–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. R. G. Gish, T. T. Chang, C. L. Lai et al., “Hepatitis B surface antigen loss in antiviral treated patients with HBeAg(+) chronic hepatitis B infection: observation from antiviral-naive patients treated with entecavir and lamivudine,” Hepatology, vol. 44, supplement 1, p. 558A, 2006. View at Google Scholar
  133. J. G. P. Reijnders, K. Deterding, J. Petersen et al., “Antiviral effect of entecavir in chronic hepatitis B: influence of prior exposure to nucleos(t)ide analogues,” Journal of Hepatology, vol. 52, no. 4, pp. 493–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. T. T. Chang, Y. C. Chao, V. V. Gorbakov et al., “Results of up to 2 years of entecavir vs lamivudine therapy in nucleoside-naïve HBeAg-positive patients with chronic hepatitis B,” Journal of Viral Hepatitis, vol. 16, no. 11, pp. 784–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. D. J. Tenney, R. E. Rose, C. J. Baldick et al., “Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve patients is rare through 5 years-of therapy,” Hepatology, vol. 49, no. 5, pp. 1503–1514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. T. T. Chang, R. G. Gish, S. J. Hadziyannis et al., “A dose-ranging study of the efficacy and tolerability of entecavir in lamivudine-refractory chronic hepatitis B patients,” Gastroenterology, vol. 129, no. 4, pp. 1198–1209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. C. J. Baidick, D. J. Tenney, C. E. Mazzucco et al., “Comprehensive evaluation of hepatitis B virus reverse transcriptase substitutions associated with entecavir resistance,” Hepatology, vol. 47, no. 5, pp. 1473–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. D. J. Tenney, S. M. Levine, R. E. Rose et al., “Clinical emergence of entecavir-resistant hepatitis B virus requires additional substitutions in virus already resistant to lamivudine,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3498–3507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. C. L. Lai, N. Leung, E. K. Teo et al., “A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B,” Gastroenterology, vol. 129, no. 2, pp. 528–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. C. L. Lai, E. Gane, Y. F. Liaw et al., “Telbivudine versus lamivudine in patients with chronic hepatitis B,” New England Journal of Medicine, vol. 357, no. 25, pp. 2576–2588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. F. Liaw, E. Gane, N. Leung et al., “2-Year GLOBE trial results: telbivudine is superior to lamivudine in patients with chronic hepatitis B,” Gastroenterology, vol. 136, no. 2, pp. 486–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. H. L. Y. Chan, E. J. Heathcote, P. Marcellin et al., “Treatment of hepatitis B e antigen-positive chronic hepatitis with telbivudine or adefovir: a randomized trial,” Annals of Internal Medicine, vol. 147, no. 11, pp. 745–754, 2007. View at Google Scholar · View at Scopus
  143. E. J. Gane, Y. Wang, Y. F. Liaw et al., “Efficacy and safety of prolonged 3-year telbivudine treatment in patients with chronic hepatitis B,” Liver International, vol. 31, no. 5, pp. 676–684, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. W. K. Seto, C. L. Lai, J. Fung et al., “Significance of HBV DNA levels at 12 weeks of telbivudine treatment and the 3 years treatment outcome,” Journal of Hepatology, vol. 55, pp. 522–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Zeuzem, E. Gane, Y. F. Liaw et al., “Baseline characteristics and early on-treatment response predict the outcomes of 2 years of telbivudine treatment of chronic hepatitis B,” Journal of Hepatology, vol. 51, no. 1, pp. 11–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. X. S. Zhang, R. Jin, S. B. Zhang, and M. L. Tao, “Clinical features of adverse reactions associated with telbivudine,” World Journal of Gastroenterology, vol. 14, no. 22, pp. 3549–3553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Goncalves, R. Laeufle, and C. Avila, “Increased risk with combination of telbivudine and pegylated-interferon alfa-2a in study CLDT600A2406, compared to uncommon rate with telbivudine monotherapy from the Novartis global database,” Journal of Hepatology, vol. 50, pp. S329–S330, 2009. View at Google Scholar
  148. P. Marcellin, E. J. Heathcote, M. Buti et al., “Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B,” New England Journal of Medicine, vol. 359, no. 23, pp. 2442–2455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. E. J. Heathcote, P. Marcellin, M. Buti et al., “Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B,” Gastroenterology, vol. 140, no. 1, pp. 132–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. P. Marcellin, M. Buti, Z. Krastev et al., “Continued efficacy and safety through 4 years of tenofovir disoproxil fumarate (TDF) treatment in HBeAg negative patients with chronic hepatitis B, (study 102): preliminary analysis,” Hepatology, vol. 52, no. 4, supplement, p. 555A, 2010. View at Google Scholar
  151. E. J. Heathcote, E. J. Gane, R. De Man et al., “Long term (4 years) efficacy and safety of tenofovir disoproxil fumarate (TDF) treatment in HBeAG-positive patients (HBeAg+) with chronic hepatitis B, (Study 103): preliminary analysis,” Hepatology, vol. 52, no. 4, supplement, p. 556A, 2010. View at Google Scholar
  152. E. Gane, S. L. Lee, E. J. Heathcote et al., “Four years efficacy and safety of tenofovir didoproxil fumarate (TDF) in Asians with HBeAg-positive and HBeAg-negative chronic hepatitis B, (CHB), preliminary analysis,” Hepatology, vol. 52, no. 4 Supplement, p. 559A, 2010. View at Google Scholar
  153. P. Marcellin, M. Buti, E. J. Gane et al., “Five years of treatment with Tenofovir DF, (TDF) for Chronic Hepatitis B, (CHB) infection is associated with sustained viral suppression and significant regression of histological fibrosis and cirrhosis,” Hepatology, vol. 54, p. 1011A, 2011. View at Google Scholar
  154. D. Verhelst, M. Monge, J. L. Meynard et al., “Fanconi syndrome and renal failure induced by tenofovir: a first case report,” American Journal of Kidney Diseases, vol. 40, no. 6, pp. 1331–1333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  155. N. Leung, R. G. Gish, C. Wang et al., “A randomized, double-blind comparison of 3 doses of emtricitabine in patients with chronic hepatitis B given 48 weeks of treatment,” Hepatology, vol. 34, p. 349A, 2001. View at Google Scholar
  156. G. K. Lau and N. Leung, “Forty-eight weeks treatment with clevudine 30 mg qd versus lamivudine 100 mg qd for chronic hepatitis B infection: a double-blind randomized study,” The Korean Journal of Hepatology, vol. 16, no. 3, pp. 315–320, 2010. View at Google Scholar · View at Scopus
  157. B. Seigneres, C. Pichoud, P. Martin, P. Furman, C. Trepo, and F. Zoulim, “Inhibitory activity of dioxolane purine analogs on wild-type and lamivudine-resistant mutants of hepadnaviruses,” Hepatology, vol. 36, no. 3, pp. 710–722, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. M. F. Yuen, J. Kim, C. R. Kim et al., “A randomized placebo-controlled, dose-finding study of oral LB80380 in HBeAg-positive patients with chronic hepatitis B,” Antiviral Therapy, vol. 11, no. 8, pp. 977–983, 2006. View at Google Scholar · View at Scopus
  159. M. F. Yuen, K. H. Han, S. H. Um et al., “Antiviral activity and safety of LB80380 in hepatitis B e antigen-positive chronic hepatitis B patients with lamivudine-resistant disease,” Hepatology, vol. 51, no. 3, pp. 767–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. G. Y. Wu, X. J. Zheng, C. C. Yin et al., “Inhibition of hepatitis B virus replication by Bay 41-4109 and its association with nucleocapsid disassembly,” Journal of Chemotherapy, vol. 20, no. 4, pp. 458–467, 2008. View at Google Scholar · View at Scopus
  161. S. J. Stray and A. Zlotnick, “BAY 41-4109 has multiple effects on hepatitis B virus capsid assembly,” Journal of Molecular Recognition, vol. 19, no. 6, pp. 542–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. R. Bartenschlager, F. L. Cosset, and V. Lohmann, “Hepatitis C virus replication cycle,” Journal of Hepatology, vol. 53, no. 3, pp. 583–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. E. Santolini, G. Migliaccio, and N. La Monica, “Biosynthesis and biochemical properties of the hepatitis C virus core protein,” Journal of Virology, vol. 68, no. 6, pp. 3631–3641, 1994. View at Google Scholar · View at Scopus
  164. J. McLauchlan, M. K. Lemberg, G. Hope, and B. Martoglio, “Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets,” EMBO Journal, vol. 21, no. 15, pp. 3980–3988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  165. V. Pène, C. Hernandez, C. Vauloup-Fellous, J. Garaud-Aunis, and A. R. Rosenberg, “Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment,” Journal of Viral Hepatitis, vol. 16, no. 10, pp. 705–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. J. L. Kim, K. A. Morgenstern, J. P. Griffith et al., “Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding,” Structure, vol. 6, no. 1, pp. 89–100, 1998. View at Google Scholar · View at Scopus
  167. V. Lohmann, F. Körner, J. O. Koch, U. Herian, L. Theilmann, and R. Bartenschlager, “Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line,” Science, vol. 285, no. 5424, pp. 110–113, 1999. View at Publisher · View at Google Scholar · View at Scopus
  168. T. Wakita, T. Pietschmann, T. Kato et al., “Production of infectious hepatitis C virus in tissue culture from a cloned viral genome,” Nature Medicine, vol. 11, no. 7, pp. 791–796, 2005, Erratum: Nature Medicine, vol. 11, no. 8, pp. 905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Merz, G. Long, M. S. Hiet et al., “Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome,” Journal of Biological Chemistry, vol. 286, no. 4, pp. 3018–3032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. E. Scarselli, H. Ansuini, R. Cerino et al., “The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus,” EMBO Journal, vol. 21, no. 19, pp. 5017–5025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  171. P. Pileri, Y. Uematsu, S. Campagnoli et al., “Binding of hepatitis C virus to CD81,” Science, vol. 282, no. 5390, pp. 938–941, 1998. View at Publisher · View at Google Scholar · View at Scopus
  172. M. J. Evans, T. Von Hahn, D. M. Tscherne et al., “Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry,” Nature, vol. 446, no. 7137, pp. 801–805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Ploss, M. J. Evans, V. A. Gaysinskaya et al., “Human occludin is a hepatitis C virus entry factor required for infection of mouse cells,” Nature, vol. 457, no. 7231, pp. 882–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Lupberger, M. B. Zeisel, F. Xiao et al., “EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy,” Nature Medicine, vol. 17, no. 5, pp. 589–595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  175. B. Sainz Jr., N. Barretto, D. N. Martin et al., “Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor,” Nature Medicine, vol. 18, pp. 281–285, 2012. View at Google Scholar
  176. L. Meertens, C. Bertaux, L. Cukierman et al., “The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus,” Journal of Virology, vol. 82, no. 7, pp. 3555–3560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. K. E. Coller, K. L. Berger, N. S. Heaton, J. D. Cooper, R. Yoon, and G. Randall, “RNA interference and single particle tracking analysis of hepatitis C virus endocytosis,” PLoS Pathogens, vol. 5, no. 12, Article ID e1000702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. E. Blanchard, S. Belouzard, L. Goueslain et al., “Hepatitis C virus entry depends on clathrin-mediated endocytosis,” Journal of Virology, vol. 80, no. 14, pp. 6964–6972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. J. McLauchlan, “Lipid droplets and hepatitis C virus infection,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 552–559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. C. I. Popescu, Y. Rouille, and J. Dubuisson, “Hepatitis C virus assembly imaging,” Viruses, vol. 3, pp. 2238–2254, 2011. View at Google Scholar
  181. P. Gastaminza, G. Cheng, S. Wieland, J. Zhong, W. Liao, and F. V. Chisari, “Cellular determinants of hepatitis c virus assembly, maturation, degradation, and secretion,” Journal of Virology, vol. 82, no. 5, pp. 2120–2129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. C. T. Jones, C. L. Murray, D. K. Eastman, J. Tassello, and C. M. Rice, “Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus,” Journal of Virology, vol. 81, no. 16, pp. 8374–8383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  183. E. Steinmann, F. Penin, S. Kallis, A. H. Patel, R. Bartenschlager, and T. Pietschmann, “Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions,” PLoS pathogens, vol. 3, no. 7, article e103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Yi, Y. Ma, J. Yates, and S. M. Lemon, “trans-complementation of an NS2 defect in a late step in hepatitis C virus (HCV) particle assembly and maturation,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. H. Huang, F. Sun, D. M. Owen et al., “Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5848–5853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. K. S. Chang, J. Jiang, Z. Cai, and G. Luo, “Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture,” Journal of Virology, vol. 81, no. 24, pp. 13783–13793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Kaul, S. Stauffer, C. Berger et al., “Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics,” PLoS Pathogens, vol. 5, no. 8, Article ID e1000546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  188. F. Yang, J. M. Robotham, H. B. Nelson, A. Irsigler, R. Kenworthy, and H. Tang, “Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro,” Journal of Virology, vol. 82, no. 11, pp. 5269–5278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Reiss, I. Rebhan, P. Backes et al., “Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment,” Cell Host and Microbe, vol. 9, no. 1, pp. 32–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. T. Kuntzen, J. Timm, A. Berical et al., “Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naïve patients,” Hepatology, vol. 48, no. 6, pp. 1769–1778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. M. P. Manns, J. G. McHutchison, S. C. Gordon et al., “Peginterferon alfa-2b plus ribavirin compared with interferonalfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial,” Lancet, vol. 358, no. 9286, pp. 958–965, 2001. View at Publisher · View at Google Scholar · View at Scopus
  192. M. W. Fried, ShiffmanML, K. R. Reddy et al., “Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection,” The New England Journal of Medicine, vol. 347, pp. 975–982, 2002. View at Google Scholar
  193. E. Thomas, J. J. Feld, Q. Li, Z. Hu, M. W. Fried, and T. J. Liang, “Ribavirin potentiates interferon action by augmenting interferon-stimulated gene induction in hepatitis C virus cell culture models,” Hepatology, vol. 53, no. 1, pp. 32–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  194. I. M. Jacobson, R. S. Brown, and B. Freilich, “Peginterferon a2b and weight-based or flat-dose ribavirin in chronic hepatitis C patients: a randomized trial,” Hepatology, vol. 46, pp. 971–981, 2007. View at Google Scholar
  195. P. Glue, R. Rouzier-Panis, C. Raffanel et al., “A dose-ranging study of pegylated interferon alfa-2b and ribavirin in chronic hepatitis C,” Hepatology, vol. 32, no. 3, pp. 647–653, 2000. View at Google Scholar · View at Scopus
  196. M. G. Swain, M. Lai, M. L. Shiffman et al., “A sustained virologic response is durable in patients with chronic hepatitis C treated with peginterferon Alfa-2a and ribavirin,” Gastroenterology, vol. 139, no. 5, pp. 1593–1601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. M. G. Ghany, D. B. Strader, D. L. Thomas, and L. B. Seeff, “Diagnosis, management, and treatment of hepatitis C: an update,” Hepatology, vol. 49, no. 4, pp. 1335–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  198. C. F. Huang, J. F. Yang, C. Y. Dai et al., “Efficacy and safety of pegylated interferon combined with ribavirin for the treatment of older patients with chronic hepatitis C,” Journal of Infectious Diseases, vol. 201, no. 5, pp. 751–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. I. M. Jacobson, R. S. Brown, J. McCone et al., “Impact of weight-based ribavirin with peginterferon alfa-2b in African Americans with hepatitis C virus genotype 1,” Hepatology, vol. 46, no. 4, pp. 982–990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  200. J. G. Mchutchison, S. C. Gordon, E. R. Schiff et al., “Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C,” New England Journal of Medicine, vol. 339, no. 21, pp. 1485–1492, 1998. View at Publisher · View at Google Scholar · View at Scopus
  201. J. G. McHutchison, E. J. Lawitz, M. L. Shiffman et al., “Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection,” New England Journal of Medicine, vol. 361, no. 6, pp. 580–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  202. D. Ge, J. Fellay, A. J. Thompson et al., “Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance,” Nature, vol. 461, no. 7262, pp. 399–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  203. C. Hézode, N. Forestier, G. Dusheiko et al., “Telaprevir and peginterferon with or without ribavirin for chronic HCV infection,” New England Journal of Medicine, vol. 360, no. 18, pp. 1839–1850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  204. J. G. McHutchison, G. T. Everson, S. C. Gordon et al., “Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection,” New England Journal of Medicine, vol. 360, no. 18, pp. 1827–1838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. J. G. McHutchison, M. P. Manns, A. J. Muir et al., “Telaprevir for previously treated chronic HCV infection,” New England Journal of Medicine, vol. 362, no. 14, pp. 1292–1303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. S. Zeuzem, C. Hezode, P. Ferenci et al., “Telaprevir in combination with peginterferon alfa-2a with or without ribavirin in the treatment of chronic hepatitis C. Final results of the PROVE 2 study,” Hepatology, vol. 48, supplement 1, pp. 418–419, 2008. View at Google Scholar
  207. M. S. Sulkowski, S. Roberts, N. Afdhal et al., “. Ribavirin dose modification in treatment-naive and previously treated patients who received telaprevir combination treatment: no impact on sustained virologic response in phase 3 studies,” Journal of Hepatology, vol. 56, supplement 2, p. A1162, 2012. View at Google Scholar
  208. K. E. Sherman, S. Flamm, N. H. Afdhal et al., “Telaprevir in combination with peginterferon alfa2a and ribavirin for 24 or 48 weeks in treatment-naive genotype 1 HCV patients who achieved an extended rapid viral response: final results of phase 3 ILLUMINATE,” Study. Hepatology, vol. 52, supplement 4, article LB-2, 2010. View at Google Scholar
  209. S. Zeuzem, P. Andreone, S. Pol et al., “Telaprevir for retreatment of HCV infection,” New England Journal of Medicine, vol. 364, no. 25, pp. 2417–2428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  210. P. Y. Kwo, E. J. Lawitz, J. McCone et al., “SPRINT-1 investigators. Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naïve patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial,” Lancet, vol. 376, pp. 705–716, 2010. View at Google Scholar
  211. F. Poordad, J. McCone, B. R. Bacon et al., “Boceprevir for untreated chronic HCV genotype 1 infection,” New England Journal of Medicine, vol. 364, no. 13, pp. 1195–1206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  212. B. R. Bacon, S. C. Gordon, E. Lawitz et al., “Boceprevir for previously treated chronic HCV genotype 1 infection,” New England Journal of Medicine, vol. 364, no. 13, pp. 1207–1217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  213. T. L. Kieffer, C. Sarrazin, J. S. Miller et al., “Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients,” Hepatology, vol. 46, no. 3, pp. 631–639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  214. S. Susser, C. Welsch, Y. Wang et al., “Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus-infected patients,” Hepatology, vol. 50, no. 6, pp. 1709–1718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  215. J. A. Howe, P. Qiu, R. A. Ogert et al., “Frequencies of resistance associated amino acid variants detected by 454-sequencing during combination treatment with boceprevir plus PegIntron (peginterferon alfa-2b)/ribavirin in HCV, (GT1)-infected patients,” Journal of Hepatology, vol. 54, supplemen 1, p. 176, 2011. View at Google Scholar
  216. S. Zeuzem, M. Sulkowski, F. Zoulim et al., “Long-term follow up of patients with chronic hepatitis C treated with telaprevir in combination with peginterferon alfa-2A and ribavirin: interim analysis of the EXTEND study,” Hepatology, vol. 52, supplement 1, p. 436A, 2010. View at Google Scholar
  217. H. W. Reesink, G. C. Fanning, K. A. Farha et al., “Rapid HCV-RNA decline with once daily TMC435: a phase I study in healthy volunteers and hepatitis C patients,” Gastroenterology, vol. 138, no. 3, pp. 913–921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. J. M. Gottwein, T. K. Scheel, T. B. Jensen et al., “. Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses,” Gastroenterology, vol. 141, pp. 1067–1079, 2011. View at Google Scholar
  219. Y. S. Tsantrizos, “TMC-435, an NS3/4A protease inhibitor for the treatment of HCV infection,” Current Opinion in Investigational Drugs, vol. 10, no. 8, pp. 871–881, 2009. View at Google Scholar · View at Scopus
  220. S. Zeuzem, T. Berg, E. Gane P et al., “TMC435 in HCV genotype 1 patients who have failed previous pegylated interferon/ribavirin treatment: final SVR24 results of the aspire trial,” Journal of Hepatology, vol. 56, supplement 2, p. A2, 2012. View at Google Scholar
  221. N. Forestier, D. Larrey, P. Marcellin et al., “Antiviral activity of danoprevir (ITMN-191/RG7227) in combination with pegylated interferon α-2a and ribavirin in patients with hepatitis C,” Journal of Infectious Diseases, vol. 204, no. 14, pp. 601–608, 2011. View at Publisher · View at Google Scholar · View at Scopus
  222. E. J. Gane, R. Rouzier, C. Stedman et al., “Antiviral activity, safety, and pharmacokinetics of danoprevir/ritonavir plus PEG-IFN alpha-2a/RBV in hepatitis C patients,” Journal of Hepatology, vol. 55, pp. 972–979, 2011. View at Google Scholar
  223. S. Zeuzem, T. Asselah, P. Angus et al., “Efficacy of the protease inhibitor BI, 201335, polymerase inhibitor BI, 207127, and ribavirin in patients with chronic HCV infection,” Gastroenterology, vol. 141, pp. 2047–2055, 2011. View at Google Scholar
  224. F. E. Membreno and E. J. Lawitz, “The HCV NS5B nucleoside and nonnucleoside inhibitors,” Clinics in Liver Disease, vol. 15, pp. 611–626, 2011. View at Google Scholar
  225. A. M. Lam, C. Espiritu, S. Bansal et al., “HCV nucleotide inhibitors PSI-352938 and PSI-353661 exhibit a novel mechanism of resistance requiring multiple mutations within replicon RNA,” Journal of Virology, vol. 85, pp. 12334–12342, 2011. View at Google Scholar
  226. J. Lalezari, E. Lawitz, M. Rodriguez-Torres et al., “Once daily PSI-7977 plus PegIFN/RBV in a phase 2B trial: rapid virologic suppression in treatment-naïve patients with HCV GT2/GT3,” Journal of Hepatology, vol. 54, supplement 1, p. A61, 2011. View at Google Scholar
  227. K. V. Kowdlev, E. Läwitz, I. Crespo et al., “Atomic: 97% RVR for PSI-7977 + PEG/RBV × 12 week regimen in HCV gt1: an end to response-guided therapy?” Journal of Hepatology, vol. 56, supplement 2, p. A1, 2012. View at Google Scholar
  228. H. Wedemeyer, D. Jensen, R. Herring et al., “Efficacy and safety of mericitabine (MCB) in combination with Peg-IFNa-2a/RBV in g1/4 treatment naive HCV patients: final analysis from the propel study,” Journal of Hepatology, vol. 56, supplement 2, p. A1213, 2012. View at Google Scholar
  229. P. Pockros, D. Jensen, N. Tsai R et al., “. SVR-12 among G1/4 treatment-naive patients receiving mericitabine in combination with Peg-IFNa-2a/RBV: interim analysis from the JUMP-C study,” Journal of Hepatology, vol. 56, supplement 2, p. A1205, 2012. View at Google Scholar
  230. E. Lawitz, I. Jacobson, E. Godofsky et al., “. A Phase 2b trial comparing 24 to 48 weeks of treatment with tegobuvir (GS-9190)/PEG/RV to 48 weeks treatment with PEG/RBV for chronic genotype 1 HCV infection,” Journal of Hepatology, vol. 54, supplemen 1, p. A445, 2011. View at Google Scholar
  231. S. Einav, D. Gerber, P. D. Bryson et al., “Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis,” Nature Biotechnology, vol. 26, no. 9, pp. 1019–1027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  232. R. A. Fridell, D. Qiu, L. Valera, C. Wang, R. E. Rose, and M. Gao, “Distinct functions of NS5A in hepatitis C virus RNA replication uncovered by studies with the NS5A Inhibitor BMS-790052,” Journal of Virology, vol. 85, no. 14, pp. 7312–7320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  233. P. Ferraris, E. Blanchard, and P. Roingeard, “Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes,” Journal of General Virology, vol. 91, no. 9, pp. 2230–2237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  234. A. Macdonald and M. Harris, “Hepatitis C virus NS5A: tales of a promiscuous protein,” Journal of General Virology, vol. 85, no. 9, pp. 2485–2502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  235. K. H. Lan, K. L. Lan, W. P. Lee et al., “HCV NS5A inhibits interferon-α signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines,” Journal of Hepatology, vol. 46, no. 5, pp. 759–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  236. R. G. Gish and N. A. Meanwell, “The NS5A replication complex inhibitors: difference makers?” Clinics in Liver Disease, vol. 15, pp. 627–639, 2011. View at Google Scholar
  237. S. Pol, R. H. Ghalib, V. K. Rustgi et al., “First report of SVR12 for a NS5A replication complex inhibitor, BMS-790052 in combination with peg-IFN-alfa-2a and RBV: phase 2a trial in treatment-naive HCV-genotype 1 subjects,” Journal of Hepatology, vol. 54, supplement 1, p. A2, 2011. View at Google Scholar
  238. G. J. Sullivan, M. Rodriques-Torres, E. Lawitz F et al., “ABT-267 combined with pegylated interferon alpha-2a/ribavirin in genotype 1 (gt1) HCV-infected treatment-naive subjects: 12 week antiviral and safety analysis,” Journal of Hepatology, vol. 56, supplement 2, p. A1210, 2012. View at Google Scholar
  239. S. Zeuzem, P. Buggisch, K. Agarwal et al., “Dual, triple, and quadruple combination treatment with a protease inhibitor (GS-9256) and a polymerase inhibitor (GS-9190) alone and in combination with ribavirin (RBV) or PegIFN/RBV for up to 28 days in treatment naive, genotype 1 HCV subjects,” in Proceedings of the 61th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD '10), LB-1, Boston, Mass, USA, 2010.
  240. G. R. Foster, P. Buggisch, P. Marcellin et al., “Four-week treatment with GS-9256 and tegobuvir (GS-9190), ± RBV ± PEG, results in enhanced viral suppression on follow-up PEG/RBV therapy, in genotype 1a/1b HCV patients,” Journal of Hepatology, vol. 54, supplement 1, p. A232, 2011. View at Google Scholar
  241. D. R. Nelson, E. J. Gane, I. M. Jacobson et al., “VX-222/telaprevir in combination with peginterferon-alfa-2a and ribavirin in treatment naïve genotype 1 HCV patients treated for 12 weeks: ZENITH study, SVR12 interim analysis,” in Proceedings of the 61th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD '11), LB-14, San Francisco, Calif, USA, 2011.
  242. E. Z. Zhang, A. Tigges, M. Jiang et al., “Characterization of HCV variants in genotype 1 treatment-naive patients administered the combination of TVR and VX-222 in dual arms of zenith study,” Journal of Hepatology, vol. 56, supplement 2, p. A1184, 2012. View at Google Scholar
  243. A. Lok, D. Gardiner, E. Lawitz et al., “Preliminary study of two antiviral agents for hepatitis C genotype 1,” The New England Journal of Medicine, vol. 366, pp. 216–224, 2012. View at Google Scholar
  244. A. Lok, D. Gardiner, E. Lawitz et al., “Quadruple therapy with BMS-790052, BMS-650032 and PEG-IFN/RBV for 24 weeks results in 100% SVR12 in HCV genotype 1 null responders,” Journal of Hepatology, vol. 54, supplement 1, p. S536, 2011. View at Google Scholar
  245. E. Lawitz, F. Poordad, E. DeJesus et al., “ABT-450/Ritonavir (ABT-450/R) combined with pegylated interferon alpha-2a/ribavirin after 3-day monotherapy in genotype 1 (gt1) hcv-infected treatment-naive subjects: 12-week sustained virologic response (SVR12) and safety results,” Journal of Hepatology, vol. 56, supplement 2, p. A1187, 2012. View at Google Scholar
  246. G. Everson, C. Cooper, C. Hezode et al., “Rapid and sustained achievement of undetectable HCV RNA during treatment with Ritonavir-boosted Danoprevir/PEG-IFNa-2A/RBV in HCV genotype 1 or 4 patients: DAUPHINE week 12 interim analysis,” Journal of Hepatology, vol. 56, supplement 2, p. A1177, 2012. View at Google Scholar
  247. D. R. Nelson, E. Lawitz, V. Bain et al., “High SVR12 with 16 weeks of Tegobuvir and GS-9256 with peginterferon-alfa 2a and ribavirin in treatment-naive genotype 1 HCV patients,” Journal of Hepatology, vol. 56, supplement 2, p. A12, 2012. View at Google Scholar
  248. E. Gane, C. A. Stedman, R. H. Hyland et al., “Once daily PSI-7977 plus RBV: pegylated interferon alfa not required for complete rapid viral response in treatment-naive patients with HCV GT2 or 3,” in Proceedings of the 61th Annual Meeting of the American Association for the Study of Liver Diseases (AASLD '11), San Francisco, Calif, USA, 2011.
  249. F. Suzuki, K. Ikeda, J. Toyota et al., “Dual oral therapy with the NS5A inhibitor Daclatasvir (BMS-790052) and NS3 protease inhibitor Asunaprevir (BMS-650032) in HCV genotype 1b-infected null responders or ineligible/intolerant to peginterferon/ribavirin,” Journal of Hepatology, vol. 56, supplement 2, p. A14, 2012. View at Google Scholar
  250. M. Sulkowski, D. Gardiner, E. Lawitz et al., “Potent viral suppression with the all oral combination of Daclatasvir and GS-7977, +/- ribavirin, in treatment naïve patients with chronic GT1, 2, or 3,” in Proceedings of the 47th annual meeting of the European Association for the Study of the Liver (EASL '12), P1422, Barcelona, Spain, 2012.
  251. S. Zeuzem, V. Soriano, T. Asselah et al., “SVR4 and SVR12 with an interferon-free regimen of BI201335 and BI207127, +/- ribavirin, in treatment-naive patients with chronic genotype-1 HCV infection: interim results of SOUND-C2,” Journal of Hepatology, vol. 56, supplement 2, p. A101, 2012. View at Google Scholar
  252. V. Soriano, E. Gane, P. Angus et al., “The efficacy and safety of the interferon-free combination of BI201335 AND BI207127 in genotype 1 HCV PATIENTS with cirrhosis—interim analysis from SOUND-C2,” Journal of Hepatology, vol. 56, supplement 2, p. A1420, 2012. View at Google Scholar
  253. E. Lawitz, F. Poordad, K. V. Kowdley et al., “A 12-week interferon-free regimen of ABT-450/R, ABT-072, and ribavirin was well tolerated and achieved sustained virologic response in 91% treatment-naive HCV IL28B-CC genotype-1-infected subjects,” Journal of Hepatology, vol. 56, supplement 2, p. A13, 2012. View at Google Scholar
  254. M. Sulkowski, M. Rodriguez-Torres, E. Lawitz et al., “High sustained virologic response rate in treatment-naive HCV genotype 1a and 1b patients treated for 12 weeks with an interferon-free all-oral quad regimen: interim results,” Journal of Hepatology, vol. 56, supplement 2, p. A1421, 2012. View at Google Scholar
  255. X. Hanoulle, A. Badillo, J. M. Wieruszeski et al., “Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13589–13601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  256. S. Hopkins, B. Scorneaux, Z. Huang et al., “SCY-635, a novel nonimmunosuppressive analog of cyclosporine that exhibits potent inhibition of Hepatitis C virus RNA replication in vitro,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 2, pp. 660–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  257. S. Hopkins, S. Mosier, R. Harris et al., “Resistance selection following 15 days of monotherapy with SCY-635 a non-immunosuppressive cyclophilin inhibitor with potent anti-HCV activity,” Journal of Hepatology, vol. 52, supplement 1, p. A34, 2010. View at Google Scholar
  258. L. Coelmont, X. Hanoulle, U. Chatterji et al., “Deb025 (Alisporivir) inhibits hepatitis c virus replication by preventing a cyclophilin a induced Cis-trans isomerisation in domain ii of NS5A,” PLoS One, vol. 5, no. 10, Article ID e13687, 2010. View at Publisher · View at Google Scholar · View at Scopus
  259. R. Flisiak, J. M. Pawlotsky, R. Crabbe et al., “Once daily alisporivir (DEB025) plus PegIFNalfa2A/ribavirin results in superior sustained virologic response (SVR24) in chronic hepatitis C genotype 1 treatment naive patients,” Journal of Hepatology, vol. 54, supplement 1, p. A4, 2011. View at Google Scholar
  260. C. L. Jopling, M. Yi, A. M. Lancaster, S. M. Lemon, and P. Sarnow, “Molecular biology: modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA,” Science, vol. 309, no. 5740, pp. 1577–1581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  261. R. E. Lanford, E. S. Hildebrandt-Eriksen, A. Petri et al., “Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection,” Science, vol. 327, no. 5962, pp. 198–201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  262. A. K. Patick, A. Chen, L. J. van Doorn et al., “Sequence analysis of hcv variants from a phase IIA trial of Miravirsen (MIR), an oligonucleotide targeting MIR-122, in treatment naive patients with chronic HCV infection,” Journal of Hepatology, vol. 56, supplement 2, A1202 pages, 2012. View at Google Scholar
  263. H. Zhu, F. Wong-Staal, H. Lee et al., “Evaluation of ITX, 5061, a scavenger receptor B1 antagonist: resistance selection and activity in combination with other hepatitis C virus antivirals,” The Journal of Infectious Diseases, vol. 205, pp. 656–662, 2012. View at Google Scholar
  264. M. Rizzetto, “Hepatitis D: thirty years after,” Journal of Hepatology, vol. 50, no. 5, pp. 1043–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  265. G. Saracco, F. Rosina, M. R. Brunetto et al., “Rapidly progressive HBsAg-positive hepatitis in Italy. The role of hepatitis delta virus infection,” Journal of Hepatology, vol. 5, no. 3, pp. 274–281, 1987. View at Google Scholar · View at Scopus
  266. G. Fattovich, S. Boscaro, and F. Noventa, “Influence of hepatitis delta virus infection on progression to cirrhosis in chronic hepatitis type B,” Journal of Infectious Diseases, vol. 155, no. 5, pp. 931–935, 1987. View at Google Scholar · View at Scopus
  267. R. Romeo, E. Del Ninno, M. Rumi et al., “A 28-year study of the course of hepatitis Δ infection: a risk factor for cirrhosis and hepatocellular carcinoma,” Gastroenterology, vol. 136, no. 5, pp. 1629–1638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  268. C. Sureau, “The role of the HBV envelope proteins in the HDV replication cycle,” Current Topics in Microbiology and Immunology, vol. 307, pp. 113–131, 2006. View at Google Scholar · View at Scopus
  269. K. S. Wang, Q. L. Choo, and A. J. Weiner, “Structure, sequence and expression of the hepatitis delta (δ) viral genome,” Nature, vol. 323, no. 6088, pp. 508–514, 1986. View at Google Scholar · View at Scopus
  270. H. N. Wu, Y. J. Lin, F. P. Lin, S. Makino, M. F. Chang, and M. M. C. Lai, “Human hepatitis δ virus RNA subfragments contain an autocleavage activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 6, pp. 1831–1835, 1989. View at Google Scholar · View at Scopus
  271. Y. J. Li, T. Macnaughton, L. Gao, and M. M. C. Lai, “RNA-templated replication of hepatitis delta virus: genomic and antigenomic RNAs associate with different nuclear bodies,” Journal of Virology, vol. 80, no. 13, pp. 6478–6486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  272. J. Taylor and M. Pelchat, “Origin of hepatitis virus,” Future Microbiology, vol. 5, no. 3, pp. 393–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  273. A. J. Weiner, Q. L. Choo, K. S. Wang et al., “A single antigenomic open reading frame of the hepatitis delta virus encodes the epitope(s) of both hepatitis delta antigen polypeptides p24(δ) and p27(δ),” Journal of Virology, vol. 62, no. 2, pp. 594–599, 1988. View at Google Scholar · View at Scopus
  274. M. F. Chang, C. J. Chen, and S. C. Chang, “Mutational analysis of delta antigen: effect on assembly and replication of hepatitis delta virus,” Journal of Virology, vol. 68, no. 2, pp. 646–653, 1994. View at Google Scholar · View at Scopus
  275. S. J. Hadziyannis, “Use of α-interferon in the treatment of chronic delta hepatitis,” Journal of Hepatology, vol. 13, supplement 1, pp. S21–S26, 1991. View at Google Scholar · View at Scopus
  276. P. Farci, T. Roskams, L. Chessa et al., “Long-term benefit of interferon α therapy of chronic hepatitis D: regression of advanced hepatic fibrosis,” Gastroenterology, vol. 126, no. 7, pp. 1740–1749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  277. G. A. Niro, A. Ciancio, G. B. Gaeta et al., “Pegylated interferon alpha-2b as monotherapy or in combination with ribavirin in chronic hepatitis delta,” Hepatology, vol. 44, no. 3, pp. 713–720, 2006. View at Publisher · View at Google Scholar · View at Scopus
  278. A. Erhardt, W. Gerlich, C. Starke et al., “Treatment of chronic hepatitis delta with pegylated interferon-α2b,” Liver International, vol. 26, no. 7, pp. 805–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  279. C. Castelnau, F. Le Gal, M. P. Ripault et al., “Efficacy of peginterferon alpha-2b in chronic hepatitis delta: relevance of quantitative RT-PCR for follow-up,” Hepatology, vol. 44, no. 3, pp. 728–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  280. F. Gunsar, U. S. Akarca, G. Ersoz et al., “Two-year interferon therapy with or without ribavirin in chronic delta hepatitis,” Antiviral Therapy, vol. 10, no. 6, pp. 721–726, 2005. View at Google Scholar · View at Scopus
  281. H. Wedemeyer, C. Yurdaydìn, G. N. Dalekos et al., “Peginterferon plus adefovir versus either drug alone for hepatitis delta,” New England Journal of Medicine, vol. 364, no. 4, pp. 322–331, 2011. View at Publisher · View at Google Scholar · View at Scopus
  282. C. Yurdaydin, H. Bozkaya, F. O. Önder et al., “Treatment of chronic delta hepatitis with lamivudine vs lamivudine + interferon vs interferon,” Journal of Viral Hepatitis, vol. 15, no. 4, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  283. J. S. Glenn, J. A. Watson, C. M. Havel, and J. M. White, “Identification of a prenylation site in delta virus large antigen,” Science, vol. 256, no. 5061, pp. 1331–1333, 1992. View at Google Scholar · View at Scopus
  284. B. B. Bordier, J. Ohkanda, P. Liu et al., “In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus,” Journal of Clinical Investigation, vol. 112, no. 3, pp. 407–414, 2003. View at Publisher · View at Google Scholar · View at Scopus