Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012, Article ID 545328, 11 pages
http://dx.doi.org/10.6064/2012/545328
Review Article

Alu Mobile Elements: From Junk DNA to Genomic Gems

Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA

Received 21 October 2012; Accepted 6 November 2012

Academic Editors: Y. Ge, A. H. Salem, and H. Schatten

Copyright © 2012 Sami Dridi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Rogers, “Retroposons defined,” Nature, vol. 301, no. 5900, article 460, 1983. View at Publisher · View at Google Scholar · View at Scopus
  2. S. L. Mathias, A. F. Scott, H. H. Kazazian Jr., J. D. Boeke, and A. Gabriel, “Reverse transcriptase encoded by a human transposable element,” Science, vol. 254, no. 5039, pp. 1808–1810, 1991. View at Google Scholar · View at Scopus
  3. M. Dewannieux, C. Esnault, and T. Heidmann, “LINE-mediated retrotransposition of marked Alu sequences,” Nature Genetics, vol. 35, no. 1, pp. 41–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. W. Schmid and W. R. Jelinek, “The Alu family of dispersed repetitive sequences,” Science, vol. 216, no. 4550, pp. 1065–1070, 1982. View at Google Scholar · View at Scopus
  5. T. A. Allen, S. von Kaenel, J. A. Goodrich, and J. F. Kugel, “The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock,” Nature Structural and Molecular Biology, vol. 11, no. 9, pp. 816–821, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Espinoza, T. A. Allen, A. R. Hieb, J. F. Kugel, and J. A. Goodrich, “B2 RNA binds directly to RNA polymerase II to repress transcript synthesis,” Nature Structural and Molecular Biology, vol. 11, no. 9, pp. 822–829, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. P. D. Mariner, R. D. Walters, C. A. Espinoza et al., “Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock,” Molecular Cell, vol. 29, no. 4, pp. 499–509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Lev-Maor, R. Sorek, N. Shomron, and G. Ast, “The birth of an alternatively spliced exon: 3' Splice-site selection in Alu exons,” Science, vol. 300, no. 5623, pp. 1288–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. L. Deininger and M. A. Batzer, “Alu repeats and human disease,” Molecular Genetics and Metabolism, vol. 67, no. 3, pp. 183–193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Kaneko, S. Dridi, V. Tarallo et al., “DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration,” Nature, vol. 471, pp. 325–330, 2011. View at Google Scholar
  11. M. A. Batzer and P. L. Deininger, “Alu repeats and human genomic diversity,” Nature Reviews Genetics, vol. 3, no. 5, pp. 370–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. E. D. Gundelfinger, M. di Carlo, D. Zopf, and M. Melli, “Structure and evolution of the 7SL RNA component of the signal recognition particle,” The EMBO Journal, vol. 3, no. 10, pp. 2325–2332, 1984. View at Google Scholar · View at Scopus
  13. E. Ullu and C. Tschudi, “Alu sequences are processed 7SL RNA genes,” Nature, vol. 312, no. 5990, pp. 171–172, 1984. View at Google Scholar · View at Scopus
  14. V. Siegel and P. Walter, “Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact,” Nature, vol. 320, no. 6057, pp. 81–84, 1986. View at Google Scholar · View at Scopus
  15. C. W. Schmid, “Alu: a parasite's parasite?” Nature Genetics, vol. 35, no. 1, pp. 15–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. R. H. Waterston, K. Lindblad-Toh, E. Birney et al., “Initial sequencing and comparative analysis of the mouse genome,” Nature, vol. 420, pp. 520–562, 2002. View at Google Scholar
  17. Y. Quentin, “A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes,” Nucleic Acids Research, vol. 22, no. 12, pp. 2222–2227, 1994. View at Google Scholar · View at Scopus
  18. D. Labuda, D. Sinnett, C. Richer, J. M. Deragon, and G. Striker, “Evolution of mouse B1 repeats: 7SL RNA folding pattern conserved,” Journal of Molecular Evolution, vol. 32, no. 5, pp. 405–414, 1991. View at Google Scholar · View at Scopus
  19. A. S. Krayev, T. V. Markusheva, D. A. Kramerov et al., “Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing,” Nucleic Acids Research, vol. 10, no. 23, pp. 7461–7475, 1982. View at Publisher · View at Google Scholar · View at Scopus
  20. G. R. Daniels and P. L. Deininger, “Repeat sequence families derived from mammalian tRNA genes,” Nature, vol. 317, no. 6040, pp. 819–822, 1985. View at Google Scholar · View at Scopus
  21. J. Kim and P. L. Deininger, “Recent amplification of rat ID sequences,” Journal of Molecular Biology, vol. 261, no. 3, pp. 322–327, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. I. M. Serdobova and D. A. Kramerov, “Short retroposons of the B2 superfamily: evolution and application for the study of rodent phylogeny,” Journal of Molecular Evolution, vol. 46, no. 2, pp. 202–214, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. C. S. Lin, D. A. Goldthwait, and D. Samols, “Identification of Alu transposition in human lung carcinoma cells,” Cell, vol. 54, no. 2, pp. 153–159, 1988. View at Google Scholar · View at Scopus
  24. L. Manco, L. Relvas, C. S. Pinto, J. Pereira, A. B. Almeida, and M. L. Ribeiro, “Molecular characterization of five Portuguese patients with pyrimidine 5'-nucleotidase deficient hemolytic anemia showing three new P5'N-I mutations,” Haematologica, vol. 91, no. 2, pp. 266–267, 2006. View at Google Scholar · View at Scopus
  25. C. W. Schmidt and P. L. Deininger, “Sequence organization of the human genome,” Cell, vol. 6, no. 3, pp. 345–358, 1975. View at Google Scholar · View at Scopus
  26. C. M. Houck, F. P. Rinehart, and C. W. Schmid, “A ubiquitous family of repeated DNA sequences in the human genome,” Journal of Molecular Biology, vol. 132, no. 3, pp. 289–306, 1979. View at Google Scholar · View at Scopus
  27. C. M. Rubin, C. M. Houck, and P. L. Deininger, “Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences,” Nature, vol. 284, no. 5754, pp. 372–374, 1980. View at Google Scholar · View at Scopus
  28. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 2001. View at Google Scholar
  29. M. R. Shen, J. Brosius, and P. L. Deininger, “BC1 RNA, the transcript from a master gene for ID element amplification, is able to prime its own reverse transcription,” Nucleic Acids Research, vol. 25, no. 8, pp. 1641–1648, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Feng, J. V. Moran, H. H. Kazazian, and J. D. Boeke, “Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition,” Cell, vol. 87, no. 5, pp. 905–916, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. J. V. Moran, S. E. Holmes, T. P. Naas, R. J. DeBerardinis, J. D. Boeke, and H. H. Kazazian Jr., “High frequency retrotransposition in cultured mammalian cells,” Cell, vol. 87, no. 5, pp. 917–927, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Jurka, “Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1872–1877, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. J. D. Boeke, “LINEs and Alus—the polyA connection,” Nature Genetics, vol. 16, no. 1, pp. 6–7, 1997. View at Google Scholar · View at Scopus
  34. V. Slagel, E. Flemington, and V. Traina-Dorge, “Clustering and subfamily relationships of the Alu family in the human genome,” Molecular Biology and Evolution, vol. 4, no. 1, pp. 19–29, 1987. View at Google Scholar · View at Scopus
  35. P. L. Deininger and V. K. Slagel, “Recently amplified Alu family members share a common parental Alu sequence,” Molecular and Cellular Biology, vol. 8, no. 10, pp. 4566–4569, 1988. View at Google Scholar · View at Scopus
  36. J. Jurka and T. Smith, “A fundamental division in the Alu family of repeated sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 13, pp. 4775–4778, 1988. View at Google Scholar · View at Scopus
  37. G. B. Hutchinson, S. E. Andrew, H. McDonald et al., “An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily,” Nucleic Acids Research, vol. 21, no. 15, pp. 3379–3383, 1993. View at Google Scholar · View at Scopus
  38. J. Jurka, “A new subfamily of recently retroposed human Alu repeats,” Nucleic Acids Research, vol. 21, no. 9, p. 2252, 1993. View at Google Scholar · View at Scopus
  39. M. A. Batzer, P. L. Deininger, U. Hellmann-Blumberg et al., “Standardized nomenclature for Alu repeats,” Journal of Molecular Evolution, vol. 42, no. 1, pp. 3–6, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. Shen, M. A. Batzer, and P. L. Deininger, “Evolution of the master Alu gene(s),” Journal of Molecular Evolution, vol. 33, no. 4, pp. 311–320, 1991. View at Google Scholar · View at Scopus
  41. P. L. Deininger, M. A. Batzer, C. A. Hutchison, and M. H. Edgell, “Master genes in mammalian repetitive DNA amplification,” Trends in Genetics, vol. 8, no. 9, pp. 307–311, 1992. View at Google Scholar · View at Scopus
  42. A. M. Roy, M. L. Carroll, D. H. Kass et al., “Recently integrated human Alu repeats: finding needles in the haystack,” Genetica, vol. 107, no. 1–3, pp. 149–161, 1999. View at Google Scholar · View at Scopus
  43. J. Xing, Y. Zhang, K. Han et al., “Mobile elements create structural variation: analysis of a complete human genome,” Genome Research, vol. 19, no. 9, pp. 1516–1526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. Batzer, M. Stoneking, M. Alegria-Hartman et al., “African origin of human-specific polymorphic Alu insertions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 25, pp. 12288–12292, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Stoneking, J. J. Fontius, S. L. Clifford et al., “Alu insertion polymorphisms and human evolution: evidence for a larger population size in Africa,” Genome Research, vol. 7, no. 11, pp. 1061–1071, 1997. View at Google Scholar · View at Scopus
  46. W. S. Watkins, C. E. Ricker, M. J. Bamshad et al., “Patterns of ancestral human diversity: an analysis of Alu-insertion and restriction-site polymorphisms,” American Journal of Human Genetics, vol. 68, no. 3, pp. 738–752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Medstrand, L. N. van de Lagemaat, and D. L. Mager, “Retroelement distributions in the human genome: variations associated with age and proximity to genes,” Genome Research, vol. 12, no. 10, pp. 1483–1495, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Hedges, P. A. Callinan, R. Cordaux, J. Xing, E. Barnes, and M. A. Batzer, “Differential Alu mobilization and polymorphism among the human and chimpanzee lineages,” Genome Research, vol. 14, no. 6, pp. 1068–1075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. R. E. Mills, E. A. Bennett, R. C. Iskow et al., “Recently mobilized transposons in the human and chimpanzee genomes,” American Journal of Human Genetics, vol. 78, no. 4, pp. 671–679, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. K. C. Halling, C. R. Lazzaro, R. Honchel et al., “Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene,” Human Heredity, vol. 49, no. 2, pp. 97–102, 1999. View at Google Scholar · View at Scopus
  51. J. M. Chen, E. Masson, M. Macek et al., “Detection of two Alu insertions in the CFTR gene,” Journal of Cystic Fibrosis, vol. 7, no. 1, pp. 37–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Claverie-Martin, H. González-Acosta, C. Flores, M. Antón-Gamero, and V. García-Nieto, “De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent's disease,” Human Genetics, vol. 113, no. 6, pp. 480–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Claverie-Martín, C. Flores, M. Antón-Gamero, H. González-Acosta, and V. García-Nieto, “The Alu insertion in the CLCN5 gene of a patient with Dent's disease leads to exon 11 skipping,” Journal of Human Genetics, vol. 50, no. 7, pp. 370–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Rohrer, Y. Minegishi, D. Richter, J. Eguiguren, and M. E. Conley, “Unusual mutations in Btk: an insertion, a duplication, an inversion, and four large deletions,” Clinical Immunology, vol. 90, no. 1, pp. 28–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. E. K. Jo, Y. Wang, H. Kanegane et al., “Identification of mutations in the Bruton's tyrosine kinase gene, including a novel genomic rearrangements resulting in large deletion, in Korean X-linked agammaglobulinemia patients,” Journal of Human Genetics, vol. 48, no. 6, pp. 322–326, 2003. View at Google Scholar · View at Scopus
  56. D. Kristufek, R. M. Aspalter, M. M. Eibl, and H. M. Wolf, “Characterization of novel Bruton's tyrosine kinase gene mutations in Central European patients with agammaglobulinemia,” Molecular Immunology, vol. 44, no. 7, pp. 1639–1643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Arai, M. Zhao, H. Kanegane et al., “Genetic analysis of contiguous X-chromosome deletion syndrome encompassing the BTK and TIMM8A genes,” Journal of Human Genetics, vol. 56, pp. 577–582, 2011. View at Google Scholar
  58. D. Vidaud, M. Vidaud, B. R. Bahnak et al., “Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene,” European Journal of Human Genetics, vol. 1, no. 1, pp. 30–36, 1993. View at Google Scholar · View at Scopus
  59. E. Sukarova, A. J. Dimovski, P. Tchacarova, G. H. Petkov, and G. D. Efremov, “An Alu insert as the cause of a severe form of hemophilia A,” Acta Haematologica, vol. 106, no. 3, pp. 126–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Ganguly, T. Dunbar, P. Chen, L. Godmilow, and T. Ganguly, “Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A,” Human Genetics, vol. 113, no. 4, pp. 348–352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. P. J. Tighe, S. E. Stevens, S. Dempsey, F. le Deist, F. Rieux-Laucat, and J. D. Edgar, “Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome,” Genes and Immunity, vol. 3, Supplement 1, pp. S66–S70, 2002. View at Google Scholar
  62. M. Oldridge, E. H. Zackai, D. M. McDonald-McGinn et al., “De novo Alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome,” American Journal of Human Genetics, vol. 64, no. 2, pp. 446–461, 1999. View at Google Scholar · View at Scopus
  63. M. R. Wallace, L. B. Andersen, A. M. Saulino, P. E. Gregory, T. W. Glover, and F. S. Collins, “A de novo Alu insertion results in neurofibromatosis type 1,” Nature, vol. 353, no. 6347, pp. 864–866, 1991. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Zhang, K. M. Dipple, E. Vilain et al., “AluY insertion (IVS4-52ins316Alu) in the glycerol kinase gene from an individual with benign glycerol kinase deficiency,” Human Mutation, vol. 15, pp. 316–323, 2000. View at Google Scholar
  65. P. A. Apoil, E. Kuhlein, A. Robert, H. Rubie, and A. Blancher, “HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene,” Immunogenetics, vol. 59, no. 1, pp. 17–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Gu, H. Kodama, S. Watanabe et al., “The first reported case of Menkes disease caused by an Alu insertion mutation,” Brain and Development, vol. 29, no. 2, pp. 105–108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Taskesen, G. B. Collin, A. V. Evsikov et al., “Novel Alu retrotransposon insertion leading to Alstrom syndrome,” Human Genetics, vol. 131, pp. 407–413, 2012. View at Google Scholar
  68. B. A. Tucker, T. E. Scheetz, R. F. Mullins et al., “Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa,” Proceedings of the National Academy of Sciencesof the USA, vol. 108, pp. E569–E576, 2011. View at Google Scholar
  69. K. Muratani, T. Hada, Y. Yamamoto et al., “Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11315–11319, 1991. View at Google Scholar · View at Scopus
  70. G. N. Gallus, E. Cardaioli, A. Rufa et al., “Alu-element insertion in an OPA1 intron sequence associated with autosomal dominant optic atrophy,” Molecular Vision, vol. 16, pp. 178–183, 2010. View at Google Scholar · View at Scopus
  71. S. Abdelhak, V. Kalatzis, R. Heilig et al., “Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1,” Human Molecular Genetics, vol. 6, no. 13, pp. 2247–2255, 1997. View at Google Scholar · View at Scopus
  72. S. Mustajoki, H. Ahola, P. Mustajoki, and R. Kauppinen, “Insertion of Alu element responsible for acute intermittent porphyria,” Human Mutation, vol. 13, pp. 431–438, 1999. View at Google Scholar
  73. B. Tappino, S. Regis, F. Corsolini, and M. Filocamo, “An Alu insertion in compound heterozygosity with a microduplication in GNPTAB gene underlies Mucolipidosis II,” Molecular Genetics and Metabolism, vol. 93, no. 2, pp. 129–133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. M. Rowe, S. J. Coughlan, N. J. McKenna et al., “Ovarian carcinoma-associated TaqI restriction fragment length polymorphism in intron G of the progesterone receptor gene is due to an Alu sequence insertion,” Cancer Research, vol. 55, no. 13, pp. 2743–2745, 1995. View at Google Scholar · View at Scopus
  75. Y. Miki, T. Katagiri, F. Kasumi, T. Yoshimoto, and Y. Nakamura, “Mutation analysis in the BRCA2 gene in primary breast cancers,” Nature Genetics, vol. 13, no. 2, pp. 245–247, 1996. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Wang, I. Lerer, Z. Gueta et al., “A deletion/insertion mutation in the BRCA2 gene in a breast cancer family: a possible role of the Alu-polyA tail in the evolution of the deletion,” Genes Chromosomes and Cancer, vol. 31, no. 1, pp. 91–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Amit, N. Sela, H. Keren et al., “Biased exonization of transposed elements in duplicated genes: a lesson from the TIF-IA gene,” BMC Molecular Biology, vol. 8, article 109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Cozar, B. Bembi, S. Dominissini et al., “Molecular characterization of a new deletion of the GBA1 gene due to an inter Alu recombination event,” Molecular Genetics and Metabolism, vol. 102, no. 2, pp. 226–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. M. A. Lehrman, W. J. Schneider, and T. C. Sudhof, “Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains,” Science, vol. 227, no. 4683, pp. 140–146, 1985. View at Google Scholar · View at Scopus
  80. M. A. Lehrman, J. L. Goldstein, D. W. Russell, and M. S. Brown, “Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia,” Cell, vol. 48, no. 5, pp. 827–835, 1987. View at Google Scholar · View at Scopus
  81. J. J. Chae, Y. B. Park, S. H. Kim et al., “Two partial deletion mutations involving the same Alu sequence within intron 8 of the LDL receptor gene in Korean patients with familial hypercholesterolemia,” Human Genetics, vol. 99, no. 2, pp. 155–163, 1997. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Goldmann, L. Tichy, T. Freiberger et al., “Genomic characterization of large rearrangements of the LDLR gene in Czech patients with familial hypercholesterolemia,” BMC Medical Genetics, vol. 11, article 115, 2010. View at Google Scholar
  83. M. Gentsch, A. Kaczmarczyk, K. Van Leeuwen et al., “Alu-repeat-induced deletions within the NCF2 gene causing p67-phox-deficient chronic granulomatous disease (CGD),” Human Mutation, vol. 31, no. 2, pp. 151–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. R. D. Nicholls, N. Fischel-Ghodsian, and D. R. Higgs, “Recombination at the human α-globin gene cluster: sequence features and topological constraints,” Cell, vol. 49, no. 3, pp. 369–378, 1987. View at Google Scholar · View at Scopus
  85. K. L. Harteveld, M. Losekoot, R. Fodde, P. C. Giordano, and L. F. Bernini, “The involvement of Alu repeats in recombination events at the α-globin gene cluster: characterization of two α(o)-thalassaemia deletion breakpoints,” Human Genetics, vol. 99, no. 4, pp. 528–534, 1997. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Shimada, M. Taira, Y. Suzuki et al., “Insulin-resistant diabetes associated with partial deletion of insulin-receptor gene,” The Lancet, vol. 335, no. 8699, pp. 1179–1181, 1990. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Rouyer, M. C. Simmler, D. C. Page, and J. Weissenbach, “A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination,” Cell, vol. 51, no. 3, pp. 417–425, 1987. View at Google Scholar · View at Scopus
  88. L. S. Huang, M. E. Ripps, S. H. Korman, R. J. Deckelbaum, and J. L. Breslow, “Hypobetalipoproteinemia due to an apolipoprotein B gene exon 21 deletion derived by Alu-Alu recombination,” Journal of Biological Chemistry, vol. 264, no. 19, pp. 11394–11400, 1989. View at Google Scholar · View at Scopus
  89. M. C. Pereira, J. L. Loureiro, J. Pinto-Basto et al., “Alu elements mediate large SPG11 gene rearrangements: further spatacsin mutations,” Genetics in Medicine, vol. 14, pp. 143–151, 2012. View at Google Scholar
  90. J. Häsler and K. Strub, “Alu elements as regulators of gene expression,” Nucleic Acids Research, vol. 34, no. 19, pp. 5491–5497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. R. D. Walters, J. F. Kugel, and J. A. Goodrich, “InvAluable junk: the cellular impact and function of Alu and B2 RNAs,” IUBMB Life, vol. 61, no. 8, pp. 831–837, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. K. H. Burns and J. D. Boeke, “Human transposon tectonics,” Cell, vol. 149, pp. 740–752, 2012. View at Google Scholar
  93. D. S. Friedman, B. J. O'Colmain, B. Muñoz et al., “Prevalence of age-related macular degeneration in the United States,” Archives of Ophthalmology, vol. 122, no. 4, pp. 564–572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies,” Survey of Ophthalmology, vol. 48, no. 3, pp. 257–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron, vol. 75, pp. 26–39, 2012. View at Google Scholar
  96. S. Khandhadia, J. Cherry, and A. J. Lotery, “Age-related macular degeneration,” Advances in Experimental Medicine and Biology, vol. 724, pp. 15–36, 2012. View at Google Scholar
  97. L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong, “Age-related macular degeneration,” The Lancet, vol. 379, pp. 1728–1738, 2012. View at Google Scholar
  98. S. Shiose, Y. Chen, K. Okano et al., “Toll-like receptor 3 is required for development of retinopathy caused by impaired all-trans-retinal clearance in mice,” Journal of Biological Chemistry, vol. 286, no. 17, pp. 15543–15555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Wornle, M. Merkle, A. Wolf et al., “Inhibition of TLR3-mediated proinflammatory effects by Alkylphosphocholines in human retinal pigment epithelial cells,” Investigative Ophthalmology & Visual Science, vol. 52, pp. 6536–6544, 2011. View at Google Scholar
  100. M. E. Kleinman, H. Kaneko, W. G. Cho et al., “Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3,” Molecular Therapy, vol. 20, pp. 101–108, 2012. View at Google Scholar
  101. B. Lehner, G. Williams, R. D. Campbell, and C. M. Sanderson, “Antisense transcripts in the human genome,” Trends in Genetics, vol. 18, no. 2, pp. 63–65, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Yelin, D. Dahary, R. Sorek et al., “Widespread occurrence of antisense transcription in the human genome,” Nature Biotechnology, vol. 21, no. 4, pp. 379–386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Chen, M. Sun, W. J. Kent et al., “Over 20% of human transcripts might form sense-antisense pairs,” Nucleic Acids Research, vol. 32, no. 16, pp. 4812–4820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Athanasiadis, A. Rich, and S. Maas, “Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome,” PLoS Biology, vol. 2, no. 12, article e391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. Z. Zhang and G. G. Carmichael, “The fate of dsRNA in the Nucleus: a p54nrb-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs,” Cell, vol. 106, no. 4, pp. 465–475, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. J. DeCerbo and G. G. Carmichael, “Retention and repression: fates of hyperedited RNAs in the nucleus,” Current Opinion in Cell Biology, vol. 17, no. 3, pp. 302–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. L. L. Chen and G. G. Carmichael, “Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA,” Molecular Cell, vol. 35, no. 4, pp. 467–478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. V. Tarallo, Y. Hirano, B. D. Gelfand et al., “DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88,” Cell, vol. 149, pp. 847–859, 2012. View at Google Scholar
  109. S. Dridi, Y. Hirano, V. Tarallo et al., “ERK1/2 activation is a therapeutic target in age-related macular degeneration,” Proceedings of the National Academy of Sciences of the USA, vol. 109, pp. 13781–13786, 2012. View at Google Scholar
  110. U. Kalina, D. Kauschat, N. Koyama et al., “IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-γ production by the stress kinase p38 and by the extracellular regulated kinases p44(erk-1) and p42(erk-21),” Journal of Immunology, vol. 165, no. 3, pp. 1307–1313, 2000. View at Google Scholar · View at Scopus
  111. H. Yang, H. Wang, C. J. Czura, and K. J. Tracey, “The cytokine activity of HMGB1,” Journal of Leukocyte Biology, vol. 78, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. N. McNamara, M. Gallup, A. Sucher, I. Maltseva, D. McKemy, and C. Basbaum, “AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2,” American Journal of Respiratory Cell and Molecular Biology, vol. 34, no. 6, pp. 653–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. R. W. Wagner, J. E. Smith, B. S. Cooperman, and K. Nishikura, “A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 8, pp. 2647–2651, 1989. View at Google Scholar · View at Scopus
  114. P. H. Seeburg, “A-to-I editing: new and old sites, functions and speculations,” Neuron, vol. 35, no. 1, pp. 17–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. B. Hoopengardner, T. Bhalla, C. Staber, and R. Reenan, “Nervous system targets of RNA editing identified by comparative genomics,” Science, vol. 301, no. 5634, pp. 832–836, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. S. M. Rueter, T. R. Dawson, and R. B. Emeson, “Regulation of alternative splicing by RNA editing,” Nature, vol. 399, no. 6731, pp. 75–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. D. P. Morse, P. J. Aruscavage, and B. L. Bass, “RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7906–7911, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. A. D. J. Scadden and C. W. J. Smith, “Specific cleavage of hyper-edited dsRNAs,” The EMBO Journal, vol. 20, no. 15, pp. 4243–4252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. S. W. Knight and B. L. Bass, “The role of RNA editing by ADARs in RNAi,” Molecular Cell, vol. 10, no. 4, pp. 809–817, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. D. J. Luciano, H. Mirsky, N. J. Vendetti, and S. Maas, “RNA editing of a miRNA precursor,” RNA, vol. 10, no. 8, pp. 1174–1177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. U. Kim, Y. Wang, T. Sanford, Y. Zeng, and K. Nishikura, “Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 24, pp. 11457–11461, 1994. View at Publisher · View at Google Scholar · View at Scopus
  122. M. A. O'Connell, S. Krause, M. Higuchi et al., “Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase,” Molecular and Cellular Biology, vol. 15, no. 3, pp. 1389–1397, 1995. View at Google Scholar · View at Scopus
  123. T. Melcher, S. Maas, A. Herb, R. Sprengel, P. H. Seeburg, and M. Higuchi, “A mammalian RNA editing enzyme,” Nature, vol. 379, no. 6564, pp. 460–464, 1996. View at Publisher · View at Google Scholar · View at Scopus
  124. F. Lai, C. X. Chen, K. C. Carter, and K. Nishikura, “Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases,” Molecular and Cellular Biology, vol. 17, no. 5, pp. 2413–2424, 1997. View at Google Scholar · View at Scopus
  125. C. X. Chen, D. S. C. Cho, Q. Wang, F. Lai, K. C. Carter, and K. Nishikura, “A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains,” RNA, vol. 6, no. 5, pp. 755–767, 2000. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Melcher, S. Maas, A. Herb, R. Sprengel, M. Higuchi, and P. H. Seeburg, “RED2, a brain-specific member of the RNA-specific adenosine deaminase family,” Journal of Biological Chemistry, vol. 271, no. 50, pp. 31795–31798, 1996. View at Publisher · View at Google Scholar · View at Scopus
  127. C. G. Proud, “PKR: a new name and new roles,” Trends in Biochemical Sciences, vol. 20, no. 6, pp. 241–246, 1995. View at Publisher · View at Google Scholar · View at Scopus
  128. M. J. Clemens, “PKR—a protein kinase regulated by double-stranded RNA,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 7, pp. 945–949, 1997. View at Publisher · View at Google Scholar · View at Scopus
  129. L. R. Saunders and G. N. Barber, “The dsRNA binding protein family: critical roles, diverse cellular functions,” The FASEB Journal, vol. 17, no. 9, pp. 961–983, 2003. View at Publisher · View at Google Scholar · View at Scopus
  130. A. Herbert and A. Rich, “The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 12132–12137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. T. R. Dawson, C. L. Sansam, and R. B. Emeson, “Structure and sequence determinants required for the RNA editing of ADAR2 substrates,” Journal of Biological Chemistry, vol. 279, no. 6, pp. 4941–4951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. D. S. C. Cho, W. Yang, J. T. Lee, R. Shiekhattar, J. M. Murray, and K. Nishikura, “Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17093–17102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. J. B. Patterson and C. E. Samuel, “Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase,” Molecular and Cellular Biology, vol. 15, no. 10, pp. 5376–5388, 1995. View at Google Scholar · View at Scopus
  134. C. R. Eckmann, A. Neunteufl, L. Pfaffstetter, and M. F. Jantsch, “The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein,” Molecular Biology of the Cell, vol. 12, no. 7, pp. 1911–1924, 2001. View at Google Scholar · View at Scopus
  135. J. M. P. Desterro, L. P. Keegan, M. Lafarga, M. T. Berciano, M. O'Connell, and M. Carmo-Fonseca, “Dynamic association of RNA-editing enzymes with the nucleolus,” Journal of Cell Science, vol. 116, no. 9, pp. 1805–1818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. C. L. Sansam, K. S. Wells, and R. B. Emeson, “Modulation of RNA editing by functional nucleolar sequestration of ADAR2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 14018–14023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. J. H. Yang, X. Luo, Y. Nie et al., “Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation,” Immunology, vol. 109, no. 1, pp. 15–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. R. Kikuno, T. Nagase, M. Waki, and O. Ohara, “HUGE: a database for human large proteins identified in the Kazusa cDNA sequencing project,” Nucleic Acids Research, vol. 30, no. 1, pp. 166–168, 2002. View at Google Scholar · View at Scopus
  139. M. Blow, A. P. Futreal, R. Wooster, and M. R. Stratton, “A survey of RNA editing in human brain,” Genome Research, vol. 14, no. 12, pp. 2379–2387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. D. D. Y. Kim, T. T. Y. Kim, T. Walsh et al., “Widespread RNA editing of embedded Alu elements in the human transcriptome,” Genome Research, vol. 14, no. 9, pp. 1719–1725, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. E. Y. Levanon, E. Eisenberg, R. Yelin et al., “Systematic identification of abundant A-to-I editing sites in the human transcriptome,” Nature Biotechnology, vol. 22, no. 8, pp. 1001–1005, 2004. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Tufarelli, J. A. Sloane Stanley, D. Garrick et al., “Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease,” Nature Genetics, vol. 34, no. 2, pp. 157–165, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. W. Yang, Q. Wang, K. L. Howell et al., “ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells,” Journal of Biological Chemistry, vol. 280, no. 5, pp. 3946–3953, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. H. J. Liao, R. Kobayashi, and M. B. Mathews, “Activities of adenovirus virus-associated RNAs: purification and characterization of RNA binding proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8514–8519, 1998. View at Publisher · View at Google Scholar · View at Scopus
  145. J. O. Langland, P. N. Kao, and B. L. Jacobs, “Nuclear factor-90 of activated T-cells: a double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR,” Biochemistry, vol. 38, no. 19, pp. 6361–6368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  146. R. C. Patel, D. J. Vestal, Z. Xu et al., “DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR,” Journal of Biological Chemistry, vol. 274, no. 29, pp. 20432–20437, 1999. View at Publisher · View at Google Scholar · View at Scopus
  147. L. R. Saunders, D. J. Perkins, S. Balachandran et al., “Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase,” Journal of Biological Chemistry, vol. 276, no. 34, pp. 32300–32312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Pires-daSilva, K. Nayernia, W. Engel et al., “Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities,” Developmental Biology, vol. 233, no. 2, pp. 319–328, 2001. View at Publisher · View at Google Scholar · View at Scopus
  149. H. Wu, A. R. MacLeod, W. F. Lima, and S. T. Crooke, “Identification and partial purification of human double strand RNase activity. A novel terminating mechanism for oligoribonucleotide antisense drugs,” Journal of Biological Chemistry, vol. 273, no. 5, pp. 2532–2542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  150. D. A. Wassarman and J. A. Steitz, “Alive with DEAD proteins,” Nature, vol. 349, no. 6309, pp. 463–464, 1991. View at Publisher · View at Google Scholar · View at Scopus
  151. J. P. Staley and C. Guthrie, “Mechanical devices of the spliceosome: motors, clocks, springs, and things,” Cell, vol. 92, no. 3, pp. 315–326, 1998. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Zhang, C. Herrmann, and F. Grosse, “Pre-mRNA and mRNA binding of human nuclear DNA helicase II (RNA helicase A),” Journal of Cell Science, vol. 112, pp. 1055–1064, 1999. View at Google Scholar · View at Scopus
  153. S. Aratani, R. Fujii, T. Oishi et al., “Dual roles of RNA helicase a in CREB-dependent transcription,” Molecular and Cellular Biology, vol. 21, no. 14, pp. 4460–4469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. R. Apweiler, T. K. Attwood, A. Bairoch et al., “The InterPro database, an integrated documentation resource for protein families, domains and functional sites,” Nucleic Acids Research, vol. 29, no. 1, pp. 37–40, 2001. View at Google Scholar · View at Scopus
  155. C. T. Sun, W. Y. Lo, I. H. Wang et al., “Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON,” Journal of Biological Chemistry, vol. 276, no. 26, pp. 24059–24067, 2001. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Chen, S. Vijayakumar, X. Li, and Q. Al-Awqati, “Kanadaptin is a protein that interacts with the kidney but not the erythroid form of band 3,” Journal of Biological Chemistry, vol. 273, no. 2, pp. 1038–1043, 1998. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Hübner, D. A. Jans, C. Y. Xiao, A. P. John, and D. Drenckhahn, “Signal- and importin-dependent nuclear targeting of the kidney anion exchanger 1-binding protein kanadaptin,” Biochemical Journal, vol. 361, no. 2, pp. 287–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  158. C. V. Patel, I. Handy, T. Goldsmith, and R. C. Patel, “PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37993–37998, 2000. View at Publisher · View at Google Scholar · View at Scopus
  159. D. R. Micklem, J. Adams, S. Grünert, and D. St Johnston, “Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation,” The EMBO Journal, vol. 19, no. 6, pp. 1366–1377, 2000. View at Google Scholar · View at Scopus
  160. T. H. Li and C. W. Schmid, “Differential stress induction of individual Alu loci: implications for transcription and retrotransposition,” Gene, vol. 276, no. 1-2, pp. 135–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  161. C. M. Rudin and C. B. Thompson, “Transcriptional activation of short interspersed elements by DNA-damaging agents,” Genes Chromosomes Cancer, vol. 30, pp. 64–71, 2001. View at Google Scholar
  162. C. R. Hagan, R. F. Sheffield, and C. M. Rudin, “Human Alu element retrotransposition induced by genotoxic stress,” Nature Genetics, vol. 35, no. 3, pp. 219–220, 2003. View at Publisher · View at Google Scholar · View at Scopus
  163. R. Pandey, A. K. Mandal, V. Jha, and M. Mukerji, “Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism,” Genome Biology, vol. 12, article R117, 2011. View at Google Scholar
  164. S. S. Hébert, A. S. Papadopoulou, P. Smith et al., “Genetic ablation of dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration,” Human Molecular Genetics, vol. 19, no. 20, pp. 3959–3969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. S. S. Hebert, N. Sergeant, and L. Buee, “MicroRNAs and the regulation of Tau metabolism,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 406561, 6 pages, 2012. View at Publisher · View at Google Scholar
  166. A. Halle, V. Hornung, G. C. Petzold et al., “The NALP3 inflammasome is involved in the innate immune response to amyloid-β,” Nature Immunology, vol. 9, no. 8, pp. 857–865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. S. T. Lee, K. Chu, W. S. Im et al., “Altered microRNA regulation in Huntington's disease models,” Experimental Neurology, vol. 227, no. 1, pp. 172–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. U. Bhadra, S. Santosh, N. Arora, P. Sarma, and M. Pal-Bhadra, “Interaction map and selection of microRNA targets in Parkinson's disease-related genes,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 363145, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus