Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012, Article ID 635431, 17 pages
http://dx.doi.org/10.6064/2012/635431
Review Article

Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata

1Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
2Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA

Received 12 September 2012; Accepted 3 October 2012

Academic Editors: J. R. Blazquez and M. Shoda

Copyright © 2012 Kuang-Ren Chung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. P. H. J. Thomma, “Alternaria spp.: from general saprophyte to specific parasite,” Molecular Plant Pathology, vol. 4, no. 4, pp. 225–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. G. Simmons, “Alternaria taxonomy: current status, viewpoint, change,” in Alternaria Biology, Plant Disease and Metabolites, J. Chelkowski and A. Visconti, Eds., pp. 1–35, Elsevier, Amsterdam, The Netherlands, 1992. View at Google Scholar
  3. M. Kusaba and T. Tsuge, “Phylogeny of Alternaria fungi known to produce host specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA,” Current Genetics, vol. 28, no. 5, pp. 491–498, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Rotem, The Genus Alternaria: Biology, Epidemiology and Pathogenicity, APS Press, St. Paul, Minn, USA, 1994.
  5. S. Nishimura and K. Kohmoto, “Host-specific toxins and chemical structures from Alternaria species,” Annual Review of Phytopathology, vol. 21, pp. 87–116, 1983. View at Google Scholar
  6. N. Montemurro and A. Visconti, “Alternaria metabolites—chemical and biological data,” in Alternaria Biology, Plant Disease and Metabolites, J. Chelkowski and A. Visconti, Eds., pp. 449–557, Elsevier, Amsterdam, The Netherlands, 1992. View at Google Scholar
  7. R. D. Johnson, L. Johnson, Y. Itoh, M. Kodama, H. Otani, and K. Kohmoto, “Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity,” Molecular Plant-Microbe Interactions, vol. 13, no. 7, pp. 742–753, 2000. View at Google Scholar · View at Scopus
  8. L. J. Johnson, R. D. Johnson, H. Akamatsu et al., “Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity,” Current Genetics, vol. 40, no. 1, pp. 65–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Hatta, K. Ito, Y. Hosaki et al., “A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata,” Genetics, vol. 161, no. 1, pp. 59–70, 2002. View at Google Scholar · View at Scopus
  10. K. Ito, T. Tanaka, R. Hatta, M. Yamamoto, K. Akimitsu, and T. Tsuge, “Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism,” Molecular Microbiology, vol. 52, no. 2, pp. 399–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Harimoto, R. Hatta, M. Kodama, M. Yamamoto, H. Otani, and T. Tsuge, “Expression profiles of genes encoded by the supernumerary chromosome controlling AM-toxin biosynthesis and pathogenicity in the apple pathotype of Alternaria alternata,” Molecular Plant-Microbe Interactions, vol. 20, no. 12, pp. 1463–1476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Orvehed, P. Haggblom, and K. Soderhall, “Nitrogen inhibition of mycotoxin production by Alternaria alternata,” Applied and Environmental Microbiology, vol. 54, no. 10, pp. 2361–2364, 1988. View at Google Scholar · View at Scopus
  13. R. K. Bush and J. J. Prochnau, “Alternaria-induced asthma,” Journal of Allergy and Clinical Immunology, vol. 113, no. 2, pp. 227–234, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Kohmoto, K. Akimitsu, and H. Otani, “Correlation of resistance and susceptibility of citrus to Alternaria alternata with sensitivity to host-specific toxins,” Phytopathology, vol. 81, pp. 719–722, 1991. View at Publisher · View at Google Scholar
  15. H. Otani, K. Kohmoto, and M. Kodama, “Alternaria toxins and their effects on host plants,” Canadian Journal of Botany, vol. 73, pp. S453–S458, 1996. View at Google Scholar
  16. T. L. Peever, G. Su, L. Carpenter-Boggs, and L. W. Timmer, “Molecular systematics of citrus-associated Alternaria species,” Mycologia, vol. 96, no. 1, pp. 119–134, 2004. View at Google Scholar · View at Scopus
  17. T. L. Peever, Y. Canihos, L. Olsen, A. Ibañez, Y. C. Liu, and L. W. Timmer, “Population genetic structure and host specificity of Alternaria spp. causing brown spot of Minneola tangelo and rough lemon in Florida,” Phytopathology, vol. 89, no. 10, pp. 851–860, 1999. View at Google Scholar · View at Scopus
  18. K. Akimitsu, K. Kohmoto, H. Otani, and S. Nishimura, “Host-specific effect of toxin from the rough lemon pathotype of Alternaria alternata on mitochondria,” Plant Physiology, vol. 89, pp. 925–931, 1989. View at Publisher · View at Google Scholar
  19. K. Ohtani, H. Yamamoto, and K. Akimitsu, “Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2439–2444, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Kohmoto, Y. Itoh, N. Shimomura et al., “Isolation and biological activities of two host-specific toxins from tangerine pathotype of Alternaria alternata,” Phytopathology, vol. 83, pp. 495–502, 1993. View at Google Scholar
  21. C. H. Lin, S. L. Yang, and K. R. Chung, “Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus,” Current Microbiology, vol. 62, no. 3, pp. 807–815, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Mittler, “Oxidative stress, antioxidants and stress tolerance,” Trends in Plant Science, vol. 7, no. 9, pp. 405–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Neill, R. Desikan, and J. Hancock, “Hydrogen peroxide signalling,” Current Opinion in Plant Biology, vol. 5, no. 5, pp. 388–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction,” Annual Review of Plant Biology, vol. 55, pp. 373–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Aguirre, M. Ríos-Momberg, D. Hewitt, and W. Hansberg, “Reactive oxygen species and development in microbial eukaryotes,” Trends in Microbiology, vol. 13, no. 3, pp. 111–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Herrero, J. Ros, G. Bellí, and E. Cabiscol, “Redox control and oxidative stress in yeast cells,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1217–1235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Veal, A. M. Day, and B. A. Morgan, “Hydrogen peroxide sensing and signaling,” Molecular Cell, vol. 26, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Orozco-Cardenas and C. A. Ryan, “Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6553–6557, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. Branco, H. S. Marinho, L. Cyrne, and F. Antunes, “Decrease of H2O2 plasma membrane permeability during Adaptation to H2O2 in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 279, no. 8, pp. 6501–6506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. R. Stone and S. Yang, “Hydrogen peroxide: a signaling messenger,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 243–270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. B. D'Autréaux and M. B. Toledano, “ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 813–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Ślesak, M. Libik, B. Karpinska, S. Karpinski, and Z. Miszalski, “The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses,” Acta Biochimica Polonica, vol. 54, no. 1, pp. 39–50, 2007. View at Google Scholar · View at Scopus
  33. B. Halliwell and J. M. C. Gutteridge, “Biologically relevant metal ion-dependent hydroxyl radical generation. An update,” FEBS Letters, vol. 307, no. 1, pp. 108–112, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. D. A. Wink, R. W. Nims, J. E. Saavedra, W. E. Utermahlen Jr., and P. C. Ford, “The fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 14, pp. 6604–6608, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. J. A. Imlay, “Pathways of oxidative damage,” Annual Review of Microbiology, vol. 57, pp. 395–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. M. C. Mehdy, “Active oxygen species in plant defense against pathogens,” Plant Physiology, vol. 105, no. 2, pp. 467–472, 1994. View at Google Scholar · View at Scopus
  37. E. Lam, N. Kato, and M. Lawton, “Programmed cell death, mitochondria and the plant hypersensitive response,” Nature, vol. 411, no. 6839, pp. 848–853, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. D. G. Mellersh, I. V. Foulds, V. J. Higgins, and M. C. Heath, “H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions,” Plant Journal, vol. 29, no. 3, pp. 257–268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. L. Dangl and J. D. G. Jones, “Plant pathogens and integrated defence responses to infection,” Nature, vol. 411, no. 6839, pp. 826–833, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Mahalingam and N. Fedoroff, “Stress response, cell death and signalling: the many faces of reactive oxygen species,” Physiologia Plantarum, vol. 119, no. 1, pp. 56–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. N. P. Shetty, R. Mehrabi, H. Lütken et al., “Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat,” New Phytologist, vol. 174, no. 3, pp. 637–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Doke, Y. Miura, L. M. Sanchez et al., “The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence—a review,” Gene, vol. 179, no. 1, pp. 45–51, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Lamb and R. A. Dixon, “The oxidative burst in plant disease resistance,” Annual Review of Plant Biology, vol. 48, pp. 251–275, 1997. View at Google Scholar · View at Scopus
  44. J. T. Greenberg, “Programmed cell death in plant-pathogen interactions,” Annual Review of Plant Biology, vol. 48, pp. 525–545, 1997. View at Google Scholar · View at Scopus
  45. P. Wojtaszek, “Oxidative burst: an early plant response to pathogen infection,” Biochemical Journal, vol. 322, no. 3, pp. 681–692, 1997. View at Google Scholar · View at Scopus
  46. J. T. Greenberg and N. Yao, “The role of regulation of programmed cell death in plant-pathogen interactions,” Cellular Microbiology, vol. 6, no. 3, pp. 201–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Mayer, R. C. Staples, and N. L. Gil-ad, “Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response,” Phytochemistry, vol. 58, no. 1, pp. 33–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. A. J. Able, “Role of reactive oxygen species in the response of barley to necrotrophic pathogens,” Protoplasma, vol. 221, no. 1-2, pp. 137–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Glazebrook, “Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens,” Annual Review of Phytopathology, vol. 43, pp. 205–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Unger, S. Kleta, G. Jandl, and A. V. Tiedemann, “Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea,” Journal of Phytopathology, vol. 153, no. 1, pp. 15–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Walz, I. Zingen-Sell, S. Theisen, and A. Kortekamp, “Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum,” European Journal of Plant Pathology, vol. 120, no. 4, pp. 317–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Trujillo, K. H. Kogel, and R. Hückelhoven, “Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis,” Molecular Plant-Microbe Interactions, vol. 17, no. 3, pp. 304–312, 2004. View at Google Scholar · View at Scopus
  53. Y. Narusaka, M. Narusaka, M. Seki et al., “Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata,” Molecular Plant Pathology, vol. 6, no. 6, pp. 615–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. H. H. Divon and R. Fluhr, “Nutrition acquisition strategies during fungal infection of plants,” FEMS Microbiology Letters, vol. 266, no. 1, pp. 65–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. E. M. Govrin and A. Levine, “The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea,” Current Biology, vol. 10, no. 13, pp. 751–757, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. M. E. Daub and M. Ehrenshaft, “The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology,” Annual Review of Phytopathology, vol. 38, pp. 461–490, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. V. J. Thannickal and B. L. Fanburg, “Reactive oxygen species in cell signaling,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 279, no. 6, pp. L1005–L1028, 2000. View at Google Scholar · View at Scopus
  58. M. E. Daub, S. Herrero, and K. R. Chung, “Photoactivated perylenequinone toxins in fungal pathogenesis of plants,” FEMS Microbiology Letters, vol. 252, no. 2, pp. 197–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. A. Miller and B. E. Britigan, “Role of oxidants in microbial pathophysiology,” Clinical Microbiology Reviews, vol. 10, no. 1, pp. 1–18, 1997. View at Google Scholar · View at Scopus
  60. B. Thammavongs, E. Denou, G. Missous, M. Guéguen, and J. M. Panoff, “Response to environmental stress as a global phenomenon in biology: the example of microorganisms,” Microbes and Environments, vol. 23, no. 1, pp. 20–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. W. S. Moye-Rowley, “Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences,” Eukaryotic Cell, vol. 2, no. 3, pp. 381–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. B. Toledano, A. Delaunay, L. Monceau, and F. Tacnet, “Microbial H2O2 sensors as archetypical redox signaling modules,” Trends in Biochemical Sciences, vol. 29, no. 7, pp. 351–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Delaunay, A. D. Isnard, and M. B. Toledano, “H2O2 sensing through oxidation of the Yap1 transcription factor,” The EMBO Journal, vol. 19, no. 19, pp. 5157–5166, 2000. View at Google Scholar · View at Scopus
  64. W. M. Toone and N. Jones, “Stress-activated signalling pathways in yeast,” Genes to Cells, vol. 3, no. 8, pp. 485–498, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. W. M. Toone and N. Jones, “AP-1 transcription factors in yeast,” Current Opinion in Genetics and Development, vol. 9, no. 1, pp. 55–61, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. W. M. Toone, B. A. Morgan, and N. Jones, “Redox control of AP-1-like factors in yeast and beyond,” Oncogene, vol. 20, no. 19, pp. 2336–2346, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Yan, L. H. Lee, and L. I. Davis, “Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor,” The EMBO Journal, vol. 17, no. 24, pp. 7416–7429, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. S. T. Coleman, E. A. Epping, S. M. Steggerda, and W. S. Moye-Rowley, “Yap1p activates gene transcription in an oxidant-specific fashion,” Molecular and Cellular Biology, vol. 19, no. 12, pp. 8302–8313, 1999. View at Google Scholar · View at Scopus
  69. M. J. Wood, E. C. Andrade, and G. Storz, “The redox domain of the Yap1p transcription factor contains two disulfide bonds,” Biochemistry, vol. 42, no. 41, pp. 11982–11991, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Gulshan and W. S. Moye-Rowley, “Multidrug resistance in fungi,” Eukaryotic Cell, vol. 6, no. 11, pp. 1933–1942, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Okazaki, T. Tachibana, A. Naganuma, N. Mano, and S. Kuge, “Multistep disulfide bond formation in Yap1 Is required for sensing and transduction of H2O2 stress signal,” Molecular Cell, vol. 27, no. 4, pp. 675–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Kuge, M. Arita, A. Murayama et al., “Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation,” Molecular and Cellular Biology, vol. 21, no. 18, pp. 6139–6150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. S. G. Cessna, V. E. Sears, M. B. Dickman, and P. S. Low, “Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant,” Plant Cell, vol. 12, no. 11, pp. 2191–2199, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Hückelhoven and K. H. Kogel, “Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance?” Planta, vol. 216, no. 6, pp. 891–902, 2003. View at Google Scholar · View at Scopus
  75. S. H. Spoel, J. S. Johnson, and X. Dong, “Regulation of tradeoffs between plant defenses against pathogens with different lifestyles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18842–18847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Takemoto, A. Tanaka, and B. Scott, “NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation,” Fungal Genetics and Biology, vol. 44, no. 11, pp. 1065–1076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Enjalbert, D. M. MacCallum, F. C. Odds, and A. J. P. Brown, “Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans,” Infection and Immunity, vol. 75, no. 5, pp. 2143–2151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Molina and R. Kahmann, “An Ustilago maydis gene involved in H2O2 detoxification is required for virulence,” Plant Cell, vol. 19, no. 7, pp. 2293–2309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Lev, R. Hadar, P. Amedeo, S. E. Baker, O. C. Yoder, and B. A. Horwitz, “Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals,” Eukaryotic Cell, vol. 4, no. 2, pp. 443–454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Lessing, O. Kniemeyer, I. Wozniok et al., “The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model,” Eukaryotic Cell, vol. 6, no. 12, pp. 2290–2302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Huang, K. J. Czymmek, J. L. Caplan, J. A. Sweigard, and N. M. Donofrio, “HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus,” PLoS Pathogens, vol. 7, no. 4, Article ID e1001335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. K. H. Kim, S. D. Willger, S. W. Park et al., “TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen,” PLoS Pathogens, vol. 5, no. 11, Article ID e1000653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. C. H. Lin, S. L. Yang, and K. R. Chung, “The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus,” Molecular Plant-Microbe Interactions, vol. 22, no. 8, pp. 942–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. L. Yang, C. H. Lin, and K. R. Chung, “Coordinate control of oxidative stress tolerance, vegetative growth, and fungal pathogenicity via the AP1 pathway in the rough lemon pathotype of Alternaria alternata,” Physiological and Molecular Plant Pathology, vol. 74, no. 2, pp. 100–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Vélëz, N. J. Glassbrook, and M. E. Daub, “Mannitol metabolism in the phytopathogenic fungus Alternaria alternata,” Fungal Genetics and Biology, vol. 44, no. 4, pp. 258–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Vélëz, N. J. Glassbrook, and M. E. Daub, “Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata,” FEMS Microbiology Letters, vol. 285, no. 1, pp. 122–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. C. H. Lin and K. R. Chung, “Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus,” Fungal Genetics and Biology, vol. 47, no. 10, pp. 818–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. E. A. Castillo, J. Ayté, C. Chiva et al., “Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues,” Molecular Microbiology, vol. 45, no. 1, pp. 243–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Tsurumi and Y. Ohwaki, “Transport of 14C-lableled indoleacetic acid in Vicia root segments,” Plant and Cell Physiology, vol. 19, no. 7, pp. 1195–1206, 1978. View at Google Scholar · View at Scopus
  90. K. A. Lahey, R. Yuan, J. K. Burns, P. P. Ueng, L. W. Timmer, and K. R. Chung, “Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum,” Molecular Plant-Microbe Interactions, vol. 17, no. 12, pp. 1394–1401, 2004. View at Google Scholar · View at Scopus
  91. T. Watanabe, K. Koller, and K. Messner, “Copper-dependent depolymerization of lignin in the presence of fungal metabolite, pyridine,” Journal of Biotechnology, vol. 62, no. 3, pp. 221–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Nerud, P. Baldrian, J. Gabriel, and D. Ogbeifun, “Decolorization of synthetic dyes by the Fenton reagent and the Cu/pyridine/H2O2 system,” Chemosphere, vol. 44, no. 5, pp. 957–961, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. B. N. Kunkel and D. M. Brooks, “Cross talk between signaling pathways in pathogen defense,” Current Opinion in Plant Biology, vol. 5, no. 4, pp. 325–331, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. J. L. Martindale and N. J. Holbrook, “Cellular response to oxidative stress: signaling for suicide and survival,” Journal of Cellular Physiology, vol. 192, no. 1, pp. 1–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Vranová, D. Inzé, and F. Van Breusegem, “Signal transduction during oxidative stress,” Journal of Experimental Botany, vol. 53, no. 372, pp. 1227–1236, 2002. View at Google Scholar · View at Scopus
  96. H. P. Harding, Y. Zhang, H. Zeng et al., “An integrated stress response regulates amino acid metabolism and resistance to oxidative stress,” Molecular Cell, vol. 11, no. 3, pp. 619–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Ikner and K. Shiozaki, “Yeast signaling pathways in the oxidative stress response,” Mutation Research, vol. 569, no. 1-2, pp. 13–27, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Chauhan, J. P. Latge, and R. Calderone, “Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus,” Nature Reviews Microbiology, vol. 4, no. 6, pp. 435–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Pitzschke, C. Forzani, and H. Hirt, “Reactive oxygen species signaling in plants,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1757–1764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Thomason and R. Kay, “Eukaryotic signal transduction via histidine-aspartate phosphorelay,” Journal of Cell Science, vol. 113, no. 18, pp. 3141–3150, 2000. View at Google Scholar · View at Scopus
  101. P. M. Wolanin, P. A. Thomason, and J. B. Stock, “Histidine protein kinases: key signal transducers outside the animal kingdom,” Genome Biology, vol. 3, no. 10, article 3013, pp. 3013.1–3013.8, 2002. View at Google Scholar · View at Scopus
  102. J. S. Parkinson and E. C. Kofoid, “Communication modules in bacterial signaling proteins,” Annual Review of Genetics, vol. 26, pp. 71–112, 1992. View at Google Scholar · View at Scopus
  103. J. A. Hoch, “Two-component and phosphorelay signal transduction,” Current Opinion in Microbiology, vol. 3, no. 2, pp. 165–170, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. J. L. Santos and K. Shiozaki, “Fungal histidine kinases,” Science's STKE, vol. 2001, no. 98, p. re1, 2001. View at Google Scholar · View at Scopus
  105. A. H. West and A. M. Stock, “Histidine kinases and response regulator proteins in two-component signaling systems,” Trends in Biochemical Sciences, vol. 26, no. 6, pp. 369–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. S. M. Wurgler-Murphy and H. Saito, “Two-component signal transducers and MAPK cascades,” Trends in Biochemical Sciences, vol. 22, no. 5, pp. 172–176, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Kruppa and R. Calderone, “Two-component signal transduction in human fungal pathogens,” FEMS Yeast Research, vol. 6, no. 2, pp. 149–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Maeda, S. M. Wurgler-Murphy, and H. Saito, “A two-component system that regulates an osmosensing MAP kinase cascade in yeast,” Nature, vol. 369, no. 6477, pp. 242–245, 1994. View at Publisher · View at Google Scholar · View at Scopus
  109. F. Posas, S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, T. C. Thai, and H. Saito, “Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 'two-component' osmosensor,” Cell, vol. 86, no. 6, pp. 865–875, 1996. View at Publisher · View at Google Scholar · View at Scopus
  110. P. J. Westfall, D. R. Ballon, and J. Thorner, “When the stress of your environment makes you go HOG wild,” Science, vol. 306, no. 5701, pp. 1511–1512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. N. L. Catlett, O. C. Yoder, and B. G. Turgeon, “Whole-genome analysis of two-component signal transduction genes in fungal pathogens,” Eukaryotic Cell, vol. 2, no. 6, pp. 1151–1161, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. L. A. Alex, K. A. Borkovich, and M. I. Simon, “Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 8, pp. 3416–3421, 1996. View at Publisher · View at Google Scholar · View at Scopus
  113. W. Cui, R. E. Beever, S. L. Parkes, P. L. Weeds, and M. D. Templeton, “An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea),” Fungal Genetics and Biology, vol. 36, no. 3, pp. 187–198, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. I. B. Dry, K. H. Yuan, and D. G. Hutton, “Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene,” Fungal Genetics and Biology, vol. 41, no. 1, pp. 102–108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. H. Avenot, P. Simoneau, B. Iacomi-Vasilescu, and N. Bataillé-Simoneau, “Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance,” Current Genetics, vol. 47, no. 4, pp. 234–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Motoyama, K. Kadokura, T. Ohira et al., “A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action,” Fungal Genetics and Biology, vol. 42, no. 3, pp. 200–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. A. Yoshimi, K. Kojima, Y. Takano, and C. Tanaka, “Group III histidine kinase is a positive regulator of HOG1-type mitogen-activated protein kinase in filamentous fungi,” Eukaryotic Cell, vol. 4, no. 11, pp. 1820–1828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Viaud, S. Fillinger, W. Liu et al., “A class III histidine kinase acts as a novel virulence factor in Bortrytis cinerea,” Molecular Plant-Microbe Interactions, vol. 19, no. 9, pp. 1042–1050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. N. Ochiai, T. Tokai, T. Nishiuchi, N. Takahashi-Ando, M. Fujimura, and M. Kimura, “Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum,” Biochemical and Biophysical Research Communications, vol. 363, no. 3, pp. 639–644, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. I. Vargas-Pérez, O. Sánchez, L. Kawasaki, D. Georgellis, and J. Aguirre, “Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans,” Eukaryotic Cell, vol. 6, no. 9, pp. 1570–1583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Dongo, N. Bataillé-Simoneau, C. Campion et al., “The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin,” Applied and Environmental Microbiology, vol. 75, no. 1, pp. 127–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Kojima, Y. Takano, A. Yoshimi, C. Tanaka, T. Kikuchi, and T. Okuno, “Fungicide activity through activation of a fungal signalling pathway,” Molecular Microbiology, vol. 53, no. 6, pp. 1785–1796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. K. Furukawa, Y. Hoshi, T. Maeda, T. Nakajima, and K. Abe, “Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress,” Molecular Microbiology, vol. 56, no. 5, pp. 1246–1261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Lenassi and A. Plemenitaš, “Novel group VII histidine kinase HwHhk7B from the halophilic fungi Hortaea werneckii has a putative role in osmosensing,” Current Genetics, vol. 51, no. 6, pp. 393–405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. C. H. Lin, S. L. Yang, N. Y. Wang, and K. R. Chung, “The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes,” Fungal Genetics and Biology, vol. 47, no. 4, pp. 381–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. N. Rispail and A. di Pietro, “The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum,” Molecular Plant Pathology, vol. 11, no. 3, pp. 395–407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. C. J. Eaton, I. Jourdain, S. J. Foster, J. S. Hyams, and B. Scott, “Functional analysis of a fungal endophyte stress-activated MAP kinase,” Current Genetics, vol. 53, no. 3, pp. 163–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. Y. S. Bahn, K. Kojima, G. M. Cox, and J. Heitman, “A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans,” Molecular Biology of the Cell, vol. 17, no. 7, pp. 3122–3135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. E. Nathues, C. Jörgens, N. Lorenz, and P. Tudzynski, “The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea,” Molecular Plant Pathology, vol. 8, no. 5, pp. 653–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. M. C. Gustin, J. Albertyn, M. Alexander, and K. Davenport, “Map kinase pathways in the yeast Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 62, no. 4, pp. 1264–1300, 1998. View at Google Scholar · View at Scopus
  131. M. Qi and E. A. Elion, “MAP kinase pathways,” Journal of Cell Science, vol. 118, no. 16, pp. 3569–3572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. S. L. Pelech and J. S. Sanghera, “MAP kinases: charting the regulatory pathways,” Science, vol. 257, no. 5075, pp. 1355–1356, 1992. View at Google Scholar · View at Scopus
  133. M. J. Robinson and M. H. Cobb, “Mitogen-activated protein kinase pathways,” Current Opinion in Cell Biology, vol. 9, no. 2, pp. 180–186, 1997. View at Publisher · View at Google Scholar · View at Scopus
  134. D. Kültz, “Phylogenetic and functional classification of mitogen—and stress—activated protein kinases,” Journal of Molecular Evolution, vol. 46, no. 5, pp. 571–588, 1998. View at Publisher · View at Google Scholar · View at Scopus
  135. S. M. O'Rourke and I. Herskowitz, “The HOG1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae,” Genes and Development, vol. 12, no. 18, pp. 2874–2886, 1998. View at Google Scholar · View at Scopus
  136. T. R. Shock, J. Thompson, J. R. Yates, and H. D. Madhani, “HOG1 mitogen-activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity,” Eukaryotic Cell, vol. 8, no. 4, pp. 606–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. S. M. Park, E. S. Choi, M. J. Kim, B. J. Cha, M. S. Yang, and D. H. Kim, “Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress,” Molecular Microbiology, vol. 51, no. 5, pp. 1267–1277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. Y. S. Bahn, K. Kojima, G. M. Cox, and J. Heitman, “Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans,” Molecular Biology of the Cell, vol. 16, no. 5, pp. 2285–2300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. R. Mehrabi, L. H. Zwiers, M. A. de Waard, and G. H. J. Kema, “MgHOG1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola,” Molecular Plant-Microbe Interactions, vol. 19, no. 11, pp. 1262–1269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. V. Menon, D. Li, N. Chauhan et al., “Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants,” Molecular Microbiology, vol. 62, no. 4, pp. 997–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. N. Segmüller, L. Kokkelink, S. Giesbert, D. Odinius, J. van Kan, and P. Tudzynski, “NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea,” Molecular Plant-Microbe Interactions, vol. 21, no. 6, pp. 808–819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Igbaria, S. Lev, M. S. Rose et al., “Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses,” Molecular Plant-Microbe Interactions, vol. 21, no. 6, pp. 769–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. K. P. Dixon, J. R. Xu, N. Smirnoff, and N. J. Talbot, “Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea,” Plant Cell, vol. 11, no. 10, pp. 2045–2058, 1999. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Du, J. Sarfati, J. P. Latge, and R. Calderone, “The role of the sakA (HOG1) and tcsB (SLN1) genes in the oxidant adaptation of Aspergillus fumigatus,” Medical Mycology, vol. 44, no. 3, pp. 211–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Moriwaki, J. Kihara, C. Mori, and S. Arase, “A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae,” Microbiological Research, vol. 162, no. 2, pp. 108–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. B. A. Morgan, G. R. Banks, W. M. Toone, D. Raitt, S. Kuge, and L. H. Johnston, “The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae,” The EMBO Journal, vol. 16, no. 5, pp. 1035–1044, 1997. View at Publisher · View at Google Scholar · View at Scopus
  147. J. M. Y. Lu, R. J. Deschenes, and J. S. Fassler, “Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p,” Eukaryotic Cell, vol. 2, no. 6, pp. 1304–1314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. J. M. Y. Lu, R. J. Deschenes, and J. S. Fassler, “Role for the ran binding protein, Mog1p, in Saccharomyces cerevisiaeSLN1-SKN7 signal transduction,” Eukaryotic Cell, vol. 3, no. 6, pp. 1544–1556, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. X. J. He and J. S. Fassler, “Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae,” Molecular Microbiology, vol. 58, no. 5, pp. 1454–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. F. L. Wormley Jr., G. Heinrich, J. L. Miller, J. R. Perfect, and G. M. Cox, “Identification and characterization of an SKN7 homologue in Cryptococcus neoformans,” Infection and Immunity, vol. 73, no. 8, pp. 5022–5030, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. X. J. He, K. E. Mulford, and J. S. Fassler, “Oxidative stress function of the Saccharomyces cerevisiae skn7 receiver domain,” Eukaryotic Cell, vol. 8, no. 5, pp. 768–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. J. S. Fassler and A. H. West, “Fungal Skn7 stress responses and their relationship to virulence,” Eukaryotic Cell, vol. 10, no. 2, pp. 156–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Lee, C. Godon, G. Lagniel et al., “Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast,” Journal of Biological Chemistry, vol. 274, no. 23, pp. 16040–16046, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. A. S. Alberts, N. Bouquin, L. H. Johnston, and R. Treisman, “Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein β subunits and the yeast response regulator protein Skn7,” Journal of Biological Chemistry, vol. 273, no. 15, pp. 8616–8622, 1998. View at Publisher · View at Google Scholar · View at Scopus
  155. N. Bouquin, A. L. Johnson, B. A. Morgan, and L. H. Johnston, “Association of the cell cycle transcription factor Mbp1 with the Skn7 response regulator in budding yeast,” Molecular Biology of the Cell, vol. 10, no. 10, pp. 3389–3400, 1999. View at Google Scholar · View at Scopus
  156. D. C. Raitt, A. L. Johnson, A. M. Erkine et al., “The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress,” Molecular Biology of the Cell, vol. 11, no. 7, pp. 2335–2347, 2000. View at Google Scholar · View at Scopus
  157. K. E. Williams and M. S. Cyert, “The eukaryotic response regulator Skn7p regulates calcineurin signaling through stabilization of Crz1p,” The EMBO Journal, vol. 20, no. 13, pp. 3473–3483, 2001. View at Publisher · View at Google Scholar · View at Scopus
  158. J. L. Brown, S. North, and H. Bussey, “SKN7, a yeast multicopy suppressor of a mutation affecting cell wall β- glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors,” Journal of Bacteriology, vol. 175, no. 21, pp. 6908–6915, 1993. View at Google Scholar · View at Scopus
  159. J. L. Brown, H. Bussey, and R. C. Stewart, “Yeast Skn7p functions in a eukaryotic two-component regulatory pathway,” The EMBO Journal, vol. 13, no. 21, pp. 5186–5194, 1994. View at Google Scholar · View at Scopus
  160. W. Tao, R. J. Deschenes, and J. S. Fassler, “Intracellular glycerol levels modulate the activity of SLN1p, a Saccharomyces cerevisiae two-component regulator,” Journal of Biological Chemistry, vol. 274, no. 1, pp. 360–367, 1999. View at Publisher · View at Google Scholar · View at Scopus
  161. N. Nakamichi, H. Yanada, H. Aiba, K. Aoyama, R. Ohmiya, and T. Mizuno, “Characterization of the Prr1 response regulator with special reference to sexual development in Schizosaccharomyces pombe,” Bioscience, Biotechnology and Biochemistry, vol. 67, no. 3, pp. 547–555, 2003. View at Google Scholar · View at Scopus
  162. S. Oide, J. Liu, S. H. Yun et al., “Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae,” Eukaryotic Cell, vol. 9, no. 12, pp. 1867–1880, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. D. Hagiwara, T. Mizuno, and K. Abe, “Characterization of the conserved phosphorylation site in the Aspergillus nidulans response regulator SrrA,” Current Genetics, vol. 57, no. 2, pp. 103–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. L.-H. Chen, C.-H. Lin, and K.-R. Chung, “Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata,” Fungal Genetics and Biology, vol. 49, no. 10, pp. 802–813, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. N. Y. Wang, C. H. Lin, and K. R. Chung, “A Gα subunit gene is essential for conidiation and potassium efflux but dispensable for pathogenicity of Alternaria alternata on citrus,” Current Genetics, vol. 56, no. 1, pp. 43–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. J. I. Yago, C. H. Lin, and K. R. Chung, “The SLT2 mitogen-activated protein kinase-mediated signalling pathway governs conidiation, morphogenesis, fungal virulence and production of toxin and melanin in the tangerine pathotype of Alternaria alternata,” Molecular Plant Pathology, vol. 12, no. 7, pp. 653–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  167. S. L. Yang and K. R. Chung, “The NADPH oxidase-mediated production of H2O2and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus,” Molecular Plant Pathology, vol. 13, pp. 900–914, 2012. View at Google Scholar
  168. H.-C. Tsai, S. L. Yang, and K.-R. Chung, “Cyclic AMP-dependent protein kinase A negatively regulates conidia formation by the tangerine pathotype of Alternaria alternata,” World Journal of Microbiology and Biotechnology. In press. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Izumitsu, A. Yoshimi, and C. Tanaka, “Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus,” Eukaryotic Cell, vol. 6, no. 2, pp. 171–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  170. K. Izumitsu, A. Yoshimi, S. Hamada, A. Morita, Y. Saitoh, and C. Tanaka, “Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus,” Mycological Research, vol. 113, no. 10, pp. 1208–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  171. P. Singh, N. Chauhan, A. Ghosh, F. Dixon, and R. Calderone, “SKN7 of Candida albicans: mutant construction and phenotype analysis,” Infection and Immunity, vol. 72, no. 4, pp. 2390–2394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. T. Saijo, T. Miyazaki, K. Izumikawa et al., “Skn7p is involved in oxidative stress response and virulence of Candida glabrata,” Mycopathologia, vol. 169, no. 2, pp. 81–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  173. C. Lamarre, O. Ibrahim-Granet, C. Du, R. Calderone, and J. P. Latgé, “Characterization of the SKN7 ortholog of Aspergillus fumigatus,” Fungal Genetics and Biology, vol. 44, no. 7, pp. 682–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. J. D. Lambeth, “NOX enzymes and the biology of reactive oxygen,” Nature Reviews Immunology, vol. 4, no. 3, pp. 181–189, 2004. View at Google Scholar · View at Scopus
  175. R. Fluhr, “Reactive oxygen-generating HADPH oxidases in plants,” in Reactive Oxygen Species in Plant Signaling, Signaling and Communication in Plants, L. A. del Río and A. Puppo, Eds., pp. 1–23, Springer, Berlin, Germany, 2009. View at Google Scholar
  176. B. T. Kawahara, M. T. Quinn, and J. D. Lambeth, “Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes,” BMC Evolutionary Biology, vol. 7, article 109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  177. D. Diekmann, A. Abo, C. Johnston, A. W. Segal, and A. Hall, “Interaction of Rac with P67phox and regulation of phagocytic NADPH oxidase activity,” Science, vol. 265, no. 5171, pp. 531–533, 1994. View at Google Scholar · View at Scopus
  178. Y. A. Suh, R. S. Arnold, B. Lassegue et al., “Cell transformation by the superoxide-generating oxidase Mox1,” Nature, vol. 401, no. 6748, pp. 79–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  179. J. D. Lambeth, G. Cheng, R. S. Arnold, and W. A. Edens, “Novel homologs of gp91phox,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 459–461, 2000. View at Publisher · View at Google Scholar · View at Scopus
  180. B. Lardy, M. Bof, L. Aubry et al., “NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum,” Biochimica et Biophysica Acta, vol. 1744, no. 2, pp. 199–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. B. A. Diebold and G. M. Bokoch, “Molecular basis for Rac2 regulation of phagocyte NADPH oxidase,” Nature Immunology, vol. 2, no. 3, pp. 211–215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  182. M. A. Torres, J. L. Dangl, and J. D. G. Jones, “Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 517–522, 2002. View at Publisher · View at Google Scholar · View at Scopus
  183. H. Yoshioka, N. Numata, K. Nakajima et al., “Nicotiana benthamianagp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans,” Plant Cell, vol. 15, no. 3, pp. 706–718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. H. Lalucque and P. Silar, “NADPH oxidase: an enzyme for multicellularity?” Trends in Microbiology, vol. 11, no. 1, pp. 9–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  185. B. Scott and C. J. Eaton, “Role of reactive oxygen species in fungal cellular differentiations,” Current Opinion in Microbiology, vol. 11, no. 6, pp. 488–493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. J. Heller and P. Tudzynski, “Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease,” Annual Review of Phytopathology, vol. 49, pp. 369–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. H.-J. Kim, C. Chen, M. Kabbage, and M. B. Dickman, “Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases,” Applied and Environmental Microbiology, vol. 77, no. 21, pp. 7721–7729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  188. M. J. Egan, Z. Y. Wang, M. A. Jones, N. Smirnoff, and N. J. Talbot, “Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 28, pp. 11772–11777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. T. Lara-Ortíz, H. Riveros-Rosas, and J. Aguirre, “Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans,” Molecular Microbiology, vol. 50, no. 4, pp. 1241–1255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  190. F. Malagnac, H. Lalucque, G. Lepère, and P. Silar, “Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina,” Fungal Genetics and Biology, vol. 41, no. 11, pp. 982–997, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. N. Cano-Domínguez, K. Álvarez-Delfín, W. Hansberg, and J. Aguirre, “NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa,” Eukaryotic Cell, vol. 7, no. 8, pp. 1352–1361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  192. D. Takemoto, A. Tanaka, and B. Scott, “A P67phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis,” Plant Cell, vol. 18, no. 10, pp. 2807–2821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. A. Tanaka, M. J. Christensen, D. Takemoto, P. Park, and B. Scott, “Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction,” Plant Cell, vol. 18, no. 4, pp. 1052–1066, 2006. View at Publisher · View at Google Scholar · View at Scopus
  194. A. Tanaka, D. Takemoto, G. S. Hyon, P. Park, and B. Scott, “NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass,” Molecular Microbiology, vol. 68, no. 5, pp. 1165–1178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  195. D. Takemoto, S. Kamakura, S. Saikia et al., “Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2861–2866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  196. S. Giesbert, T. Schürg, S. Scheele, and P. Tudzynski, “The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus Claviceps purpurea,” Molecular Plant Pathology, vol. 9, no. 3, pp. 317–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  197. H. Haas, “Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage,” Applied Microbiology and Biotechnology, vol. 62, no. 4, pp. 316–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  198. H. Haas, M. Eisendle, and B. G. Turgeon, “Siderophores in fungal physiology and virulence,” Annual Review of Phytopathology, vol. 46, pp. 149–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. C. D. Kaplan and J. Kaplan, “Iron acquisition and transcriptional regulation,” Chemical Reviews, vol. 109, no. 10, pp. 4536–4552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  200. J. C. Renshaw, G. D. Robson, A. P. J. Trinci et al., “Fungal siderophores: structures, functions and applications,” Mycological Research, vol. 106, no. 10, pp. 1123–1142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  201. A. Stintzi and K. N. Raymond, “Siderophore chemistry,” in Molecular and Cellular Iron Transport, D. M. Templeton, Ed., pp. 273–319, Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  202. H. Kleinkauf and H. von Döhren, “A nonribosomal system of peptide biosynthesis,” European Journal of Biochemistry, vol. 236, no. 2, pp. 335–351, 1996. View at Google Scholar · View at Scopus
  203. D. G. Panaccione, J. S. Scott-Craig, J. A. Pocard, and J. D. Walton, “A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum on maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 14, pp. 6590–6594, 1992. View at Publisher · View at Google Scholar · View at Scopus
  204. A. Haese, M. Schubert, M. Herrmann, and R. Zocher, “Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi,” Molecular Microbiology, vol. 7, no. 6, pp. 905–914, 1993. View at Google Scholar · View at Scopus
  205. M. A. F. Jalal, S. K. Love, and D. van der Helm, “Nα-Dimethylcoprogens Three novel trihydroxamate siderophores from pathogenic fungi,” Biology of Metals, vol. 1, no. 1, pp. 4–8, 1988. View at Publisher · View at Google Scholar · View at Scopus
  206. M. A. F. Jalal and D. van der Helm, “Siderophores of highly phytopathogenic Alternaria longipes: structures of hydroxycoprogens,” Biology of Metals, vol. 2, no. 1, pp. 11–17, 1989. View at Publisher · View at Google Scholar · View at Scopus
  207. J. Ohra, K. Morita, Y. Tsujino et al., “Production of two phytotoxic metabolites by the fungus Alternaria cassia,” Bioscience, Biotechnology, and Biochemistry, vol. 59, pp. 1782–1783, 1995. View at Publisher · View at Google Scholar
  208. S. Oide, W. Moeder, S. Krasnoff et al., “NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes,” Plant Cell, vol. 18, no. 10, pp. 2836–2853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  209. H. von Döhren, “Biochemistry and general genetics of nonribosomal peptide synthetases in fungi,” Advances in Biochemical Engineering/Biotechnology, vol. 88, pp. 217–264, 2004. View at Google Scholar · View at Scopus
  210. B. N. Lee, S. Kroken, D. Y. T. Chou, B. Robbertse, O. C. Yoder, and B. G. Turgeon, “Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress,” Eukaryotic Cell, vol. 4, no. 3, pp. 545–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. K. E. Bushley, D. R. Ripoll, and B. G. Turgeon, “Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis,” BMC Evolutionary Biology, vol. 8, no. 1, article 328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  212. K. E. Bushley and B. G. Turgeon, “Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships,” BMC Evolutionary Biology, vol. 10, no. 1, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  213. A. H. T. Hissen, A. N. C. Wan, M. L. Warwas, L. J. Pinto, and M. M. Moore, “The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence,” Infection and Immunity, vol. 73, no. 9, pp. 5493–5503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  214. M. Schrettl, E. Bignell, C. Kragl et al., “Distinct roles for intra- and extracellular siderophores during Aspergillus fumigatus infection,” PLoS Pathogens, vol. 3, no. 9, article e128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  215. B. Mei, A. D. Budde, and S. A. Leong, “sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 3, pp. 903–907, 1993. View at Publisher · View at Google Scholar · View at Scopus