Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012, Article ID 796808, 15 pages
http://dx.doi.org/10.6064/2012/796808
Review Article

The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations

Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, Darcy Road, P.O. Box 412, Westmead, NSW 2145, Australia

Received 29 August 2012; Accepted 18 September 2012

Academic Editors: J. A. Castro, Y. Chagnon, and M. Mottolese

Copyright © 2012 Beric R. Henderson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Knudson, “Antioncogenes and human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 10914–10921, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Miki, J. Swensen, D. Shattuck-Eidens et al., “A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1,” Science, vol. 266, no. 5182, pp. 66–71, 1994. View at Google Scholar · View at Scopus
  3. K. N. Nathanson, R. Wooster, and B. L. Weber, “Breast cancer genetics: what we know and what we need,” Nature Medicine, vol. 7, no. 5, pp. 552–556, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. E. M. Rosen, S. Fan, R. G. Pestell, and I. D. Goldberg, “BRCA1 gene in breast cancer,” Journal of Cellular Physiology, vol. 196, no. 1, pp. 19–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. N. C. Turner, J. S. Reis-Filho, A. M. Russell et al., “BRCA1 dysfunction in sporadic basal-like breast cancer,” Oncogene, vol. 26, no. 14, pp. 2126–2132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Y. Huen, S. M. H. Sy, and J. Chen, “BRCA1 and its toolbox for the maintenance of genome integrity,” Nature Reviews Molecular Cell Biology, vol. 11, no. 2, pp. 138–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. D. Kennedy, J. E. Quinn, P. B. Mullan, P. G. Johnston, and D. P. Harkin, “The role of BRCA1 in the cellular response to chemotherapy,” Journal of the National Cancer Institute, vol. 96, no. 22, pp. 1659–1668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Roy, J. Chun, and S. N. Powell, “BRCA1 and BRCA2: different roles in a common pathway of genome protection,” Nature Reviews Cancer, vol. 12, no. 1, pp. 68–78, 2012. View at Publisher · View at Google Scholar
  9. L. C. Wu, Z. W. Wang, J. T. Tsan et al., “Identification of a RING protein that can interact in vivo with the BRCA1 gene product,” Nature Genetics, vol. 14, no. 4, pp. 430–440, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Baer and T. Ludwig, “The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity,” Current Opinion in Genetics and Development, vol. 12, no. 1, pp. 86–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Irminger-Finger and C. E. Jefford, “Is there more to BARD1 than BRCA1?” Nature Reviews Cancer, vol. 6, no. 5, pp. 382–391, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. T. H. Thai, F. Du, J. T. Tsan et al., “Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers,” Human Molecular Genetics, vol. 7, no. 2, pp. 195–202, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Ghimenti, E. Sensi, S. Presciuttini et al., “Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations,” Genes Chromosomes and Cancer, vol. 33, no. 3, pp. 235–242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Karppinen, K. Heikkinen, K. Rapakko, and R. Winqvist, “Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer,” Journal of Medical Genetics, vol. 41, no. 9, article e114, 2004. View at Google Scholar · View at Scopus
  15. M. Fabbro and B. R. Henderson, “Regulation of tumor suppressors by nuclear-cytoplasmic shuttling,” Experimental Cell Research, vol. 282, no. 2, pp. 59–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. R. Henderson, “Regulation of BRCA1, BRCA2 and BARD1 intracellular trafficking,” BioEssays, vol. 27, no. 9, pp. 884–893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. E. Thompson, “BRCA1 16 years later: nuclear import and export processes,” FEBS Journal, vol. 277, no. 15, pp. 3072–3078, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. Khanna and S. P. Jackson, “DNA double-strand breaks: signaling, repair and the cancer connection,” Nature Genetics, vol. 27, no. 3, pp. 247–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Jasin, “Homologous repair of DNA damage and tumorigenesis: the BRCA connection,” Oncogene, vol. 21, no. 58, pp. 8981–8993, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. N. S. Y. Ting and W. H. Lee, “The DNA double-strand break response pathway: becoming more BRCAish than ever,” DNA Repair, vol. 3, no. 8-9, pp. 935–944, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Scully and A. Xie, “BRCA1 and BRCA2 in breast cancer predisposition and recombination control,” Journal of Mammary Gland Biology and Neoplasia, vol. 9, no. 3, pp. 237–246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Bekker-Jensen and N. Mailand, “Assembly and function of DNA double-strand break repair foci in mammalian cells,” DNA Repair, vol. 9, no. 12, pp. 1219–1228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. N. A. Monteiro, “BRCA1: exploring the links to transcription,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 469–474, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. L. M. Starita and J. D. Parvin, “The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair,” Current Opinion in Cell Biology, vol. 15, no. 3, pp. 345–350, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. R. Venkitaraman, “Cancer susceptibility and the functions of BRCA1 and BRCA2,” Cell, vol. 108, no. 2, pp. 171–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Balmaña, S. M. Domchek, A. Tutt, and J. E. Garber, “Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2-associated cancers,” Cancer Discovery, vol. 1, no. 1, pp. 29–34, 2011. View at Publisher · View at Google Scholar
  27. S. L. Clark, A. M. Rodriguez, R. R. Snyder, G. D. Hankins, and D. Boehning, “Structure-function of the tumor suppressor BRCA1,” Computational and Structural Biotechnology Journal, vol. 1, no. 1, Article ID e201204005, 2012. View at Publisher · View at Google Scholar
  28. H. Wang, N. Shao, Q. M. Ding, J. Q. Cui, E. S. P. Reddy, and V. N. Rao, “BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases,” Oncogene, vol. 15, no. 2, pp. 143–157, 1997. View at Google Scholar · View at Scopus
  29. H. Ruffner and I. M. Verma, “BRCA1 is a cell cycle-regulated nuclear phosphoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7138–7143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. C. A. Wilson, L. Ramos, M. R. Villaseñor et al., “Localization of human BRCA1 and its loss in high-grade, non-inherited breast carcinomas,” Nature Genetics, vol. 21, no. 2, pp. 236–240, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. Jensen, M. E. Thompson, T. L. Jetton et al., “BRCA1 is secreted and exhibits properties of a granin,” Nature Genetics, vol. 12, no. 3, pp. 303–308, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Coene, P. van Oostveldt, K. Willems, J. van Emmelo, and C. R. de Potter, “BRCA1 is localized in cytoplasmic tube-like invaginations in the nucleus,” Nature Genetics, vol. 16, no. 2, pp. 122–124, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Chen, C. F. Chen, D. J. Riley et al., “Aberrant subcellular localization of BRCA1 in breast cancer,” Science, vol. 270, no. 5237, pp. 789–791, 1995. View at Google Scholar · View at Scopus
  34. S. Okada and T. Ouchi, “Cell cycle differences in DNA damage-induced BRCA1 phosphorylation affect its subcellular localization,” The Journal of Biological Chemistry, vol. 278, no. 3, pp. 2015–2020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Jin, X. L. Xu, M. C. W. Yang et al., “Cell cycle-dependent colocalization of BARD1 and BRCA1 proteins in discrete nuclear domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 22, pp. 12075–12080, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. A. D. Choudhury, H. Xu, and R. Baer, “Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression,” The Journal of Biological Chemistry, vol. 279, no. 32, pp. 33909–33918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Schlacher, H. Wu, and M. Jasin, “A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to RAD51-BRCA1/2,” Cancer Cell, vol. 22, no. 1, pp. 106–116, 2012. View at Publisher · View at Google Scholar
  38. S. Ganesan, D. P. Silver, R. A. Greenberg et al., “BRCA1 supports XIST RNA concentration on the inactive X chromosome,” Cell, vol. 111, no. 3, pp. 393–405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Barbie, L. A. Conlan, and B. K. Kennedy, “Nuclear tumor suppressors in space and time,” Trends in Cell Biology, vol. 15, no. 7, pp. 378–385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Guerra-Rebollo, F. Mateo, K. Franke et al., “Nucleolar exit of RNF8 and BRCA1 in response to DNA damage,” Experimental Cell Research, vol. 318, no. 18, pp. 2365–2376, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Taylor, M. Tymboura, P. E. Pace et al., “An important role for BRCA1 in breast cancer progression is indicated by its loss in a large proportion of non-familial breast cancers,” International Journal of Cancer, vol. 79, no. 4, pp. 334–342, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Al-Mulla, M. Abdulrahman, G. Varadharaj, N. Akhter, and J. T. Anim, “BRCA1 gene expression in breast cancer: a correlative study between real-time RT-PCR and immunohistochemistry,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 5, pp. 621–629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Troudi, N. Uhrhammer, K. Ben Romdhane et al., “Immunolocalization of BRCA1 protein in tumor breast tissue: prescreening of BRCA1 mutation in Tunisian patients with hereditary breast cancer?” European Journal of Histochemistry, vol. 51, no. 3, pp. 219–226, 2007. View at Google Scholar · View at Scopus
  44. F. Elstrodt, A. Hollestelle, J. H. A. Nagel et al., “BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants,” Cancer Research, vol. 66, no. 1, pp. 41–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. W. W. Y. Au and B. R. Henderson, “The BRCA1 RING and BRCT domains cooperate in targeting BRCA1 to ionizing radiation-induced nuclear foci,” The Journal of Biological Chemistry, vol. 280, no. 8, pp. 6993–7001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. K. M. Brodie and B. R. Henderson, “Characterization of BRCA1 protein targeting, dynamics, and function at the centrosome: a role for the nuclear export signal, CRM1, and aurora a kinase,” Journal of Biological Chemistry, vol. 287, no. 10, pp. 7701–7716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M. T. S. Mok and B. R. Henderson, “A comparison of BRCA1 nuclear localization with 14 DNA damage response proteins and domains: identification of specific differences between BRCA1 and 53BP1 at DNA damage-induced foci,” Cellular Signalling, vol. 22, no. 1, pp. 47–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. Rodríguez and B. R. Henderson, “Identification of a functional nuclear export sequence in BRCA1,” The Journal of Biological Chemistry, vol. 275, no. 49, pp. 38589–38596, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. L. C. Hsu and R. L. White, “BRCA1 is associated with the centrosome during mitosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 12983–12988, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. L. C. Hsu, T. P. Doan, and R. L. White, “Identification of a γ-tubulin-binding domain in BRCA1,” Cancer Research, vol. 61, no. 21, pp. 7713–7718, 2001. View at Google Scholar · View at Scopus
  51. E. D. Coene, M. S. Hollinshead, A. A. T. Waeytens et al., “Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria,” Molecular Biology of the Cell, vol. 16, no. 2, pp. 997–1010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. K. M. Brodie and B. R. Henderson, “Differential modulation of BRCA1 and BARD1 nuclear localisation and foci assembly by DNA damage,” Cellular Signalling, vol. 22, no. 2, pp. 291–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Laulier, A. Barascu, J. Guirouilh-Barbat et al., “Bcl-2 inhibits nuclear homologous recombination by localizing BRCA1 to the endomembranes,” Cancer Research, vol. 71, no. 10, pp. 3590–3602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. C. F. Chen, S. Li, Y. Chen, P. L. Chen, Z. D. Sharp, and W. H. Lee, “The nuclear localization sequences of the BRCA1 protein interact with the importin-α subunit of the nuclear transport signal receptor,” The Journal of Biological Chemistry, vol. 271, no. 51, pp. 32863–32868, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Thakur, H. B. Zhang, Y. Peng et al., “Localization of BRCA1 and a splice variant identifies the nuclear localization signal,” Molecular and Cellular Biology, vol. 17, no. 1, pp. 444–452, 1997. View at Google Scholar · View at Scopus
  56. T. Jamali, Y. Jamali, M. Mehrbod, and M. R. K. Mofrad, “Nuclear pore complex: biochemistry and biophysics of nucleocytoplasmic transport in health and disease,” International Review of Cell and Molecular Biology, vol. 287, pp. 233–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Fabbro, J. A. Rodriguez, R. Baer, and B. R. Henderson, “BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21315–21324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Qin, J. Xu, K. Aysola et al., “Ubc9 mediates nuclear localization and growth suppression of BRCA1 and BRCA1a proteins,” Journal of Cellular Physiology, vol. 226, no. 12, pp. 3355–3367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. N. Chahine and G. N. Pierce, “Therapeutic targeting of nuclear protein import in pathological cell conditions,” Pharmacological Reviews, vol. 61, no. 3, pp. 358–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. H. V. Kuusisto, K. M. Wagstaff, G. Alvisi, D. M. Roth, and D. A. Jans, “Global enhancement of nuclear localization-dependent nuclear transport in transformed cells,” FASEB Journal, vol. 26, no. 3, pp. 1181–1193, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Li, C. Y. Ku, A. A. Farmer, Y. S. Cong, C. F. Chen, and W. H. Lee, “Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs,” The Journal of Biological Chemistry, vol. 273, no. 11, pp. 6183–6189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. A. J. Fulcher, D. M. Roth, S. Fatima, G. Alvisi, and D. A. Jans, “The BRCA-1 binding protein BRAP2 is a novel, negative regulator of nuclear import of viral proteins, dependent on phosphorylation flanking the nuclear localization signal,” FASEB Journal, vol. 24, no. 5, pp. 1454–1466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. I. Plo, C. Laulier, L. Gauthier, F. Lebrun, F. Calvo, and B. S. Lopez, “AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD5,” Cancer Research, vol. 68, no. 22, pp. 9404–9412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Callebaut and J. P. Mornon, “From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair,” FEBS Letters, vol. 400, no. 1, pp. 25–30, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Bork, K. Hofmann, P. Bucher, A. F. Neuwald, S. F. Altschul, and E. V. Koonin, “A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins,” FASEB Journal, vol. 11, no. 1, pp. 68–76, 1997. View at Google Scholar · View at Scopus
  66. J. A. Rodriguez, W. W. Y. Au, and B. R. Henderson, “Cytoplasmic mislocalization of BRCA1 caused by cancer-associated mutations in the BRCT domain,” Experimental Cell Research, vol. 293, no. 1, pp. 14–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. J. N. M. Glover, R. S. Williams, and M. S. Lee, “Interactions between BRCT repeats and phosphoproteins: tangled up in two,” Trends in Biochemical Sciences, vol. 29, no. 11, pp. 579–585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. C. A. Gough, T. Gojobori, and T. Imanishi, “Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study,” Proteins, vol. 66, no. 1, pp. 69–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. B. R. Henderson and A. Eleftheriou, “A comparison of the activity, sequence specificity, and CRM1-dependence of different nuclear export signals,” Experimental Cell Research, vol. 256, no. 1, pp. 213–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. J. G. Turner, J. Dawson, and D. M. Sullivan, “Nuclear export of proteins and drug resistance in cancer,” Biochemical Pharmacology, vol. 83, no. 8, pp. 1021–1032, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. K. T. Nguyen, M. P. Holloway, and R. A. Altura, “The CRM1 nuclear export protein in normal development and disease,” International Journal of Biochemistry and Molecular Biology, vol. 3, no. 2, pp. 137–151, 2012. View at Google Scholar · View at Scopus
  72. M. E. Thompson, C. L. Robinson-Benion, and J. T. Holt, “An amino-terminal motif functions as a second nuclear export sequence in BRCA1,” The Journal of Biological Chemistry, vol. 280, no. 23, pp. 21854–21857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. P. S. Brzovic, P. Rajagopal, D. W. Hoyt, M. C. King, and R. E. Klevit, “Structure of a BRCA1-BARD1 heterodimeric RING-RING complex,” Nature Structural Biology, vol. 8, no. 10, pp. 833–837, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Fabbro, S. Schuechner, W. W. Y. Au, and B. R. Henderson, “BARD1 regulates BRCA1 apoptotic function by a mechanism involving nuclear retention,” Experimental Cell Research, vol. 298, no. 2, pp. 661–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. A. Rodriguez, S. Schüchner, W. W. Y. Au, M. Fabbro, and B. R. Henderson, “Nuclear-cytoplasmic shuttling of BARD1 contributes to its proapoptotic activity and is regulated by dimerization with BRCA1,” Oncogene, vol. 23, no. 10, pp. 1809–1820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. T. S. Mok and B. R. Henderson, “The in vivo dynamic organization of BRCA1-A complex proteins at DNA damage-induced nuclear foci,” Traffic, vol. 13, no. 6, pp. 800–814, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. S. E. Polo and S. P. Jackson, “Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications,” Genes and Development, vol. 25, no. 5, pp. 409–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Glover-Collins and M. E. Thompson, “Nuclear export of BRCA1 occurs during early S phase and is calcium-dependent,” Cellular Signalling, vol. 20, no. 5, pp. 958–968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Shao, Y. L. Chai, E. Shyam, P. Reddy, and V. N. Rao, “Induction of apoptosis by the tumor suppressor protein BRCA1,” Oncogene, vol. 13, no. 1, pp. 1–7, 1996. View at Google Scholar · View at Scopus
  80. D. P. Harkin, J. M. Bean, D. Miklos et al., “Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1,” Cell, vol. 97, no. 5, pp. 575–586, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Wang, E. S. Yang, J. Jiang, S. Nowsheen, and F. Xia, “DNA damage-induced cytotoxicity is dissociated from BRCA1's DNA repair function but is dependent on its cytosolic accumulation,” Cancer Research, vol. 70, no. 15, pp. 6258–6267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Jiang, E. S. Yang, G. Jiang et al., “p53-dependent BRCA1 nuclear export controls cellular susceptibility to DNA damage,” Cancer Research, vol. 71, no. 16, pp. 5546–5557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. R. I. Yarden, S. Pardo-Reoyo, M. Sgagias, K. H. Cowan, and L. C. Brody, “BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage,” Nature Genetics, vol. 30, no. 3, pp. 285–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Tembe and B. R. Henderson, “BARD1 translocation to mitochondria correlates with bax oligomerization, loss of mitochondrial membrane potential, and apoptosis,” The Journal of Biological Chemistry, vol. 282, no. 28, pp. 20513–20522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. Z. Feng, L. Kachnic, J. Zhang, S. N. Powell, and F. Xia, “DNA damage induces p53-dependent BRCA1 nuclear export,” The Journal of Biological Chemistry, vol. 279, no. 27, pp. 28574–28584, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Lukas, V. A. Bohr, and T. D. Halazonetis, “Cellular responses to DNA damage: current state of the field and review of the 52nd Benzon Symposium,” DNA Repair, vol. 5, no. 5, pp. 591–601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Scully, J. Chen, A. Plug et al., “Association of BRCA1 with Rad51 in mitotic and meiotic cells,” Cell, vol. 88, no. 2, pp. 265–275, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Scully, J. Chen, R. L. Ochs et al., “Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage,” Cell, vol. 90, no. 3, pp. 425–435, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. W. W. Y. Au and B. R. Henderson, “Identification of sequences that target BRCA1 to nuclear foci following alkylative DNA damage,” Cellular Signalling, vol. 19, no. 9, pp. 1879–1892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Ciccia and S. J. Elledge, “The DNA damage response: making it safe to play with knives,” Molecular Cell, vol. 40, no. 2, pp. 179–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. B. Wang, “BRCA1 tumor suppressor network: focusing on its tail,” Cell and Bioscience, vol. 2, no. 1, article 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. T. T. Paull, E. P. Rogakou, V. Yamazaki, C. U. Kirchgessner, M. Gellert, and W. M. Bonner, “A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage,” Current Biology, vol. 10, no. 15, pp. 886–895, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Doil, N. Mailand, S. Bekker-Jensen et al., “RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins,” Cell, vol. 136, no. 3, pp. 435–446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. K. Yamane, E. Katayama, and T. Tsuruo, “The BRCT regions of tumor suppressor BRCA1 and of XRCC1 show DNA end binding activity with a multimerizing feature,” Biochemical and Biophysical Research Communications, vol. 279, no. 2, pp. 678–684, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Kentsis, R. E. Gordon, and K. L. B. Borden, “Control of biochemical reactions through supramolecular RING domain self-assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15404–15409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. P. Hemmerich, L. Schmiedeberg, and S. Diekmann, “Dynamic as well as stable protein interactions contribute to genome function and maintenance,” Chromosome Research, vol. 19, no. 1, pp. 131–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. L. J. Huber and L. A. Chodosh, “Dynamics of DNA repair suggested by the subcellular localization of Brca1 and Brca2 proteins,” Journal of Cellular Biochemistry, vol. 96, no. 1, pp. 47–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Hu, R. Scully, B. Sobhian, A. Xie, E. Shestakova, and D. M. Livingston, “RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci,” Genes and Development, vol. 25, no. 7, pp. 685–700, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Shi, Z. Ma, H. Willers et al., “Disassembly of MDC1 foci is controlled by ubiquitin-proteasome-dependent degradation,” The Journal of Biological Chemistry, vol. 283, no. 46, pp. 31608–31616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Moritz, M. B. Braunfeld, J. W. Sedat, B. Alberts, and D. A. Agard, “Microtubule nucleation by γ-tubulin-containing rings in the centrosome,” Nature, vol. 378, no. 6557, pp. 638–640, 1995. View at Google Scholar · View at Scopus
  101. X. Xu, Z. Weaver, S. P. Linke et al., “Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells,” Molecular Cell, vol. 3, no. 3, pp. 389–395, 1999. View at Publisher · View at Google Scholar · View at Scopus
  102. C. X. Deng, “Tumorigenesis as a consequence of genetic instability in Brca1 mutant mice,” Mutation Research, vol. 477, no. 1-2, pp. 183–189, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Shimomura, Y. Miyoshi, T. Taguchi, Y. Tamaki, and S. Noguchi, “Association of loss of BRCA1 expression with centrosome aberration in human breast cancer,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 3, pp. 421–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Tarapore, K. Hanashiro, and K. Fukasawa, “Analysis of centrosome localization of BRCA1 and its activity in suppressing centrosomal aster formation,” Cell Cycle, vol. 11, no. 15, pp. 2931–2946, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Sankaran, L. M. Starita, A. C. Groen, M. J. Ko, and J. D. Parvin, “Centrosomal microtubule nucleation activity is inhibited by BRCA1-dependent ubiquitination,” Molecular and Cellular Biology, vol. 25, no. 19, pp. 8656–8668, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Sankaran, L. M. Starita, A. M. Simons, and J. D. Parvin, “Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function,” Cancer Research, vol. 66, no. 8, pp. 4100–4107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. L. M. Starita, Y. Machida, S. Sankaran et al., “BRCA1-dependent ubiquitination of γ-tubulin regulates centrosome number,” Molecular and Cellular Biology, vol. 24, no. 19, pp. 8457–8466, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. K. M. Brodie, M. T. S. Mok, and B. R. Henderson, “Characterization of BARD1 targeting and dynamics at the centrosome: the role of CRM1, BRCA1 and the Q564H mutation,” Cellular Signalling, vol. 24, no. 2, pp. 451–459, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. K. Sato, R. Hayami, W. Wu et al., “Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase,” The Journal of Biological Chemistry, vol. 279, no. 30, pp. 30919–30922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. W. Wang, A. Budhu, M. Forgues, and X. W. Wang, “Temporal and spatial control of nucleophosmin by the Ran-Crm1 complex in centrosome duplication,” Nature Cell Biology, vol. 7, no. 8, pp. 823–830, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. X. Han, H. Saito, Y. Miki, and A. Nakanishi, “A CRM1-mediated nuclear export signal governs cytoplasmic localization of BRCA2 and is essential for centrosomal localization of BRCA2,” Oncogene, vol. 27, no. 21, pp. 2969–2977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. R. H. Wang, H. Yu, and C. X. Deng, “A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17108–17113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. V. Joukov, A. C. Groen, T. Prokhorova et al., “The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly,” Cell, vol. 127, no. 3, pp. 539–552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. M. A. Pujana, J. D. J. Han, L. M. Starita et al., “Network modeling links breast cancer susceptibility and centrosome dysfunction,” Nature Genetics, vol. 39, no. 11, pp. 1338–1349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. C. A. Maxwell, J. Benítez, L. Gómez-Baldó et al. et al., “Interplay between BRCA1 and RHAMM regulates epithelial apicobasal polarization and may influence risk of breast cancer,” PLoS Biology, vol. 9, no. 11, Article ID e1001199, 2011. View at Publisher · View at Google Scholar
  116. J. M. Esteve, M. E. Armengod, and E. Knecht, “BRCA1 negatively regulates formation of autophagic vacuoles in MCF-7 breast cancer cells,” Experimental Cell Research, vol. 316, no. 16, pp. 2618–2629, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. S. A. Martin and T. Ouchi, “BRCA1 phosphorylation regulates caspase-3 activation in UV-induced apoptosis,” Cancer Research, vol. 65, no. 23, pp. 10657–10662, 2005. View at Publisher · View at Google Scholar · View at Scopus