Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012, Article ID 812046, 12 pages
http://dx.doi.org/10.6064/2012/812046
Review Article

Screening for Ischemic Heart Disease with Cardiac CT: Current Recommendations

Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA

Received 27 August 2012; Accepted 16 September 2012

Academic Editors: D. Ho, S. Parthasarathy, and M. Sanak

Copyright © 2012 Matthew J. Budoff. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Raggi, “Coronary-calcium screening to improve risk stratification in primary prevention,” The Journal of the Louisiana State Medical Society, vol. 154, no. 6, pp. 314–318, 2002. View at Google Scholar · View at Scopus
  2. P. Greenland, J. S. Alpert, G. A. Beller et al., “2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the american college of cardiology foundation/american heart association task force on practice guidelines,” Circulation, vol. 122, no. 25, pp. e584–e636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Arad, K. J. Goodman, M. Roth, D. Newstein, and A. D. Guerci, “Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis heart study,” Journal of the American College of Cardiology, vol. 46, no. 1, pp. 158–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Detrano, A. D. Guerci, J. J. Carr et al., “Coronary calcium as a predictor of coronary events in four racial or ethnic groups,” The New England Journal of Medicine, vol. 358, no. 13, pp. 1336–1345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Budoff, L. J. Shaw, S. T. Liu et al., “Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients,” Journal of the American College of Cardiology, vol. 49, no. 18, pp. 1860–1870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Greenland, L. LaBree, S. P. Azen, T. M. Doherty, and R. C. Detrano, “Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals,” JAMA, vol. 291, no. 2, pp. 210–215, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. T. Kondos, J. A. Hoff, A. Sevrukov et al., “Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults,” Circulation, vol. 107, no. 20, pp. 2571–2576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. J. Shaw, P. Raggi, E. Schisterman, D. S. Berman, and T. Q. Callister, “Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality,” Radiology, vol. 228, no. 3, pp. 826–833, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Taylor, J. Bindeman, I. Feuerstein, F. Cao, M. Brazaitis, and P. G. O'Malley, “Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: Mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project,” Journal of the American College of Cardiology, vol. 46, no. 5, pp. 807–814, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Becker, A. Leber, C. Becker, and A. Knez, “Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals,” American Heart Journal, vol. 155, no. 1, pp. 154–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Blaha, M. J. Budoff, L. J. Shaw et al., “Absence of coronary artery calcification and all-cause mortality,” JACC, vol. 2, no. 6, pp. 692–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. G. Lakoski, P. Greenland, N. D. Wong et al., “Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: the multi-ethnic study of atherosclerosis (MESA),” Archives of Internal Medicine, vol. 167, no. 22, pp. 2437–2442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Erbel, S. Mhlenkamp, S. Moebus et al., “Coronary risk stratification, discrimination, and reclassification improvement based on quantification of Subclinical coronary atherosclerosis: the heinz nixdorf recall study,” Journal of the American College of Cardiology, vol. 56, no. 17, pp. 1397–1406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Yeboah, R. L. McClelland, T. S. Polonsky et al., “Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals,” JAMA, vol. 308, no. 8, pp. 788–795, 2012. View at Google Scholar
  15. M. J. Budoff, S. Achenbach, R. S. Blumenthal et al., “Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging, council on clinical cardiology,” Circulation, vol. 114, no. 16, pp. 1761–1791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Pencina, R. B. D'Agostino Sr., R. B. D'Agostino Jr., and R. S. Vasan, “Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond,” Statistics in Medicine, vol. 27, no. 2, pp. 157–172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. S. Polonsky, R. L. McClelland, N. W. Jorgensen et al., “Coronary artery calcium score and risk classification for coronary heart disease prediction,” JAMA, vol. 303, no. 16, pp. 1610–1616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. E. Elias-Smale, R. V. Proena, M. T. Koller et al., “Coronary calcium score improves classification of coronary heart disease risk in the elderly: the rotterdam study,” Journal of the American College of Cardiology, vol. 56, no. 17, pp. 1407–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Greenland, R. O. Bonow, B. H. Brundage et al., “ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the american college of cardiology foundation clinical expert consensus task force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography),” Circulation, vol. 115, no. 3, pp. 402–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Shareghi, N. Ahmadi, E. Young, A. Gopal, S. T. Liu, and M. J. Budoff, “Prognostic significance of zero coronary calcium scores on cardiac computed tomography,” Journal of Cardiovascular Computed Tomography, vol. 1, no. 3, pp. 155–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Rozanski, H. Gransar, N. D. Wong et al., “Clinical outcomes after both coronary calcium scanning and exercise myocardial perfusion scintigraphy,” Journal of the American College of Cardiology, vol. 49, no. 12, pp. 1352–1361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Taylor, M. Cequeira, J. M. Hodgson et al., “ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance,” Journal of the American College of Cardiology, vol. 56, no. 22, pp. 1864–1894, 2010. View at Google Scholar
  23. M. J. Budoff, R. L. McClelland, K. Nasir et al., “Cardiovascular events with absent or minimal coronary calcification: the multi-ethnic study of atherosclerosis (MESA),” American Heart Journal, vol. 158, no. 4, pp. 554–561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Raggi, T. Q. Callister, B. Cooil et al., “Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography,” Circulation, vol. 101, no. 8, pp. 850–855, 2000. View at Google Scholar · View at Scopus
  25. L. Smeeth, J. S. Skinner, J. Ashcroft, H. Hemingway, and A. Timmis, “NICE clinical guideline 95-chest pain of recent onset: assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. National Institute for Health and Clinical Excellence,” British Journal of General Practice, vol. 60, no. 577, pp. 607–610, 2010. View at Publisher · View at Google Scholar
  26. E. S. Ford, W. H. Giles, and A. H. Mokdad, “The distribution of 10-year risk for coronary heart disease among U.S. Adults: findings from the national health and nutrition examination survey III,” Journal of the American College of Cardiology, vol. 43, no. 10, pp. 1791–1796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. D. Berry, D. M. Lloyd-Jones, D. B. Garside, and P. Greenland, “Framingham risk score and prediction of coronary heart disease death in young men,” American Heart Journal, vol. 154, no. 1, pp. 80–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. O. Akosah, A. Schaper, C. Cogbill, and P. Schoenfeld, “Preventing myocardial infarction in the young adult in the first place: how do the national cholesterol education panel III guidelines perform?” Journal of the American College of Cardiology, vol. 41, no. 9, pp. 1475–1479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. D. Berry, K. Liu, A. R. Folsom et al., “Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease. the coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis,” Circulation, vol. 119, no. 3, pp. 382–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. “Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report,” Circulation, vol. 106, no. 25, pp. 3143–3421, 2002.
  31. R. McPherson, J. Frohlich, G. Fodor, and J. Genest, “Cardiovascular Society position statement—recommendations for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease,” Canadian Journal of Cardiology, vol. 22, no. 11, pp. 913–927, 2006. View at Google Scholar
  32. L. Mosca, C. L. Banka, E. J. Benjamin et al., “Evidence-based guidelines for cardiovascular disease prevention in women: 2007 Update,” Circulation, vol. 115, no. 11, pp. 1481–1501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. J. Budoff, R. Karwasky, N. Ahmadi et al., “Cost-effectiveness of multidetector computed tomography compared with myocardial perfusion imaging as gatekeeper to invasive coronary angiography in asymptomatic firefighters with positive treadmill tests,” Journal of Cardiovascular Computed Tomography, vol. 3, no. 5, pp. 323–330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Rozanski, H. Gransar, L. J. Shaw et al., “Impact of coronary artery calcium scanning on coronary risk factors and downstream testing: the EISNER (early identification of subclinical atherosclerosis by noninvasive imaging research) prospective randomized trial,” Journal of the American College of Cardiology, vol. 57, no. 15, pp. 1622–1632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. LaMonte, S. J. FitzGerald, T. S. Church et al., “Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women,” American Journal of Epidemiology, vol. 162, no. 5, pp. 421–429, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. R. A. Kronmal, R. L. McClelland, R. Detrano et al., “Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the multi-ethnic study of atherosclerosis (MESA),” Circulation, vol. 115, no. 21, pp. 2722–2730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Q. Callister, B. Cooil, S. P. Raya, N. J. Lippolis, D. J. Russo, and P. Raggi, “Coronary artery disease: improved reproducibility of calcium scoring with an electron-beam CT volumetric method,” Radiology, vol. 208, no. 3, pp. 807–814, 1998. View at Google Scholar · View at Scopus
  38. C. Hong, K. T. Bae, and T. K. Pilgram, “Coronary artery calcium: accuracy and reproducibility of measurements with multi-detector row CT—assessment of effects of different thresholds and quantification methods,” Radiology, vol. 227, no. 3, pp. 795–801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. W. McEvoy, M. J. Blaha, A. P. Defilippis et al., “Coronary artery calcium progression: an important clinical measurement? a review of published reports,” Journal of the American College of Cardiology, vol. 56, no. 20, pp. 1613–1622, 2010. View at Google Scholar · View at Scopus
  40. M. J. Budoff, J. E. Hokanson, K. Nasir et al., “Progression of coronary artery calcium predicts all-cause mortality,” JACC, vol. 3, no. 12, pp. 1229–1236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Hokanson, T. MacKenzie, G. Kinney et al., “Evaluating changes in coronary artery calcium: an analytical approach that accounts for inter-scan variability,” American Journal of Roentgenology, vol. 182, no. 5, pp. 1327–1332, 2004. View at Google Scholar · View at Scopus
  42. P. Raggi, B. Cooil, L. J. Shaw et al., “Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction,” American Journal of Cardiology, vol. 92, no. 7, pp. 827–829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Raggi, T. Q. Callister, and L. J. Shaw, “Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 7, pp. 1272–1277, 2004. View at Google Scholar
  44. P. Raggi, B. Cooil, C. Ratti, T. Q. Callister, and M. Budoff, “Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus,” Hypertension, vol. 46, no. 1, pp. 238–245, 2005. View at Google Scholar
  45. R. Hachamovitch, S. Hayes, J. D. Friedman et al., “Coronary artery disease progression assessed by electron beam tomography,” American Journal of Cardiology, vol. 88, no. 2, pp. 46E–50E, 2001. View at Google Scholar
  46. M. J. Budoff, V. A. Lopez, K. Nasir et al., “Progression of coronary calcium and incident coronary heart disease events: the multi-ethnic study of atherosclerosis (MESA),” Circulation, vol. 124, Article ID A10053, 2011. View at Google Scholar
  47. A. Gopal, K. Nasir, S. T. Liu, F. R. Flores, L. Chen, and M. J. Budoff, “Coronary calcium progression rates with a zero initial score by electron beam tomography,” International Journal of Cardiology, vol. 117, no. 2, pp. 227–231, 2007. View at Google Scholar
  48. J. K. Min, F. Y. Lin, D. S. Gidseg et al., “Determinants of coronary calcium conversion among patients with a normal coronary calcium scan: what is the “warranty period” for remaining normal?” Journal of the American College of Cardiology, vol. 55, no. 11, pp. 1110–1117, 2010. View at Google Scholar
  49. R. Hachamovitch, S. Hayes, J. D. Friedman et al., “Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan?” Journal of the American College of Cardiology, vol. 41, no. 8, pp. 1329–1340, 2003. View at Google Scholar
  50. J. H. McCarthy and F. J. Palmer, “Incidence and significance of coronary artery calcification,” British Heart Journal, vol. 36, no. 5, pp. 499–506, 1974. View at Google Scholar · View at Scopus
  51. R. D. Rifkin, A. F. Parisi, and E. Folland, “Coronary calcification in the diagnosis of coronary artery disease,” American Journal of Cardiology, vol. 44, no. 1, pp. 141–147, 1979. View at Google Scholar · View at Scopus
  52. D. A. Eggen, J. P. Strong, and H. C. McGill, “Coronary calcification: relationship to clinically significant coronary lesions and reace, sex and topographic distribution,” Circulation, vol. 32, no. 6, pp. 948–955, 1965. View at Google Scholar · View at Scopus
  53. A. Schmermund, D. Baumgart, G. Görge et al., “Coronary artery calcium in acute coronary syndromes: a comparative study of electron-beam computed tomography, coronary angiography, and intracoronary ultrasound in survivors of acute myocardial infarction and unstable angina,” Circulation, vol. 96, no. 5, pp. 1461–1469, 1997. View at Google Scholar · View at Scopus
  54. G. S. Mintz, A. D. Pichard, J. J. Popma et al., “Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study,” Journal of the American College of Cardiology, vol. 29, no. 2, pp. 268–274, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Baumgart, A. Schmermund, G. Goerge et al., “Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis,” Journal of the American College of Cardiology, vol. 30, no. 1, pp. 57–64, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. Rumberger, D. B. Simons, L. A. Fitzpatrick, P. F. Sheedy, and R. S. Schwartz, “Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study,” Circulation, vol. 92, no. 8, pp. 2157–2162, 1995. View at Google Scholar · View at Scopus
  57. P. Greenland, S. C. Smith, and S. M. Grundy, “Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests,” Circulation, vol. 104, no. 15, pp. 1863–1867, 2001. View at Google Scholar · View at Scopus
  58. J. Rumberger, B. Brundage, D. Rader, and G. Kondos, “Electron beam computed tomographie coronary calcium scanning: a review and guidelines for use in asymptomatic persons,” Mayo Clinic Proceedings, vol. 74, no. 3, pp. 243–252, 1999. View at Google Scholar · View at Scopus
  59. L. H. Kuller, “Why measure atherosclerosis?” Circulation, vol. 87, supplement 2, pp. II34–II37, 1993. View at Google Scholar · View at Scopus
  60. M. J. Budoff, K. L. Lane, H. Bakhsheshi et al., “Rates of progression of coronary calcium by electron beam tomography,” American Journal of Cardiology, vol. 86, no. 1, pp. 8–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. J. E. Mäher, L. F. Bielak, J. A. Raz, P. F. Sheedy, R. S. Schwartz, and P. A. Peyser, “Progression of coronary artery calcification: a pilot study,” Mayo Clinic Proceedings, vol. 74, no. 4, pp. 347–355, 1999. View at Google Scholar · View at Scopus
  62. K. Kajinami, H. Seki, N. Takekoshi, and H. Mabuchi, “Quantification of coronary artery calcification using ultrafast computed tomography: reproducibility of measurements,” Coronary Artery Disease, vol. 4, no. 12, pp. 1103–1108, 1993. View at Google Scholar · View at Scopus
  63. J. P. Shields, C. H. Mielke, T. H. Rockwood, R. A. Short, and F. K. Viren, “Reliability of electron beam computed tomography to detect coronary artery calcification,” American Journal of Cardiac Imaging, vol. 9, no. 2, pp. 62–66, 1995. View at Google Scholar · View at Scopus
  64. S. J. Wang, R. C. Detrano, A. Secci et al., “Detection of coronary calcification with electron-beam computed tomography: evaluation of interexamination reproducibility and comparison of three image-acquisition protocols,” American Heart Journal, vol. 132, no. 3, pp. 550–558, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. H. C. Yoon, L. E. Greaser, R. Mather, S. Sinha, M. F. McNitt-Gray, and J. G. Goldin, “Coronary artery calcium: alternate methods for accurate and reproducible quantitation,” Academic Radiology, vol. 4, no. 10, pp. 666–673, 1997. View at Google Scholar · View at Scopus
  66. W. R. Janowitz, A. S. Agatston, and M. Viamonte, “Comparison of serial quantitative evaluation of calcified coronary artery plaque by ultrafast computed tomography in persons with and without obstructive coronary artery disease,” American Journal of Cardiology, vol. 68, no. 1, pp. 1–6, 1991. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Budoff and P. Raggi, “Coronary artery disease progression assessed by electron-beam computed tomography,” American Journal of Cardiology, vol. 88, no. 2, pp. 46E–50E, 2001. View at Google Scholar · View at Scopus
  68. S. Mao, H. Bakhsheshi, B. Lu, S. C. K. Liu, R. J. Oudiz, and M. J. Budoff, “Effect of electrocardiogram triggering on reproducibility of coronary artery calcium scoring,” Radiology, vol. 220, no. 3, pp. 707–711, 2001. View at Google Scholar · View at Scopus
  69. S. Mao, M. J. Budoff, H. Bakhsheshi, and S. C. K. Liu, “Improved reproducibility of coronary artery calcium scoring by electron beam tomography with a new electrocardiographic trigger method,” Investigative Radiology, vol. 36, no. 7, pp. 363–367, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. L. F. Bielak, P. F. Sheedy, and P. A. Peyser, “Coronary artery calcification measured at electron-beam CT: agreement in dual scan runs and change over time,” Radiology, vol. 218, no. 1, pp. 224–229, 2001. View at Google Scholar · View at Scopus
  71. S. Achenbach, D. Ropers, S. Möhlenkamp et al., “Variability of repeated coronary artery calcium measurements by electron beam tomography,” American Journal of Cardiology, vol. 87, no. 2, pp. 210–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Nasir, P. Raggi, J. A. Rumberger et al., “Coronary artery calcium volume scores on electron beam tomography in 12,936 asymptomatic adults,” American Journal of Cardiology, vol. 93, no. 9, pp. 1146–1149, 2004. View at Google Scholar
  73. H. Yamamoto, M. J. Budoff, B. Lu, J. Takasu, R. J. Oudiz, and S. Mao, “Reproducibility of three different scoring systems for measurement of coronary calcium,” International Journal of Cardiovascular Imaging, vol. 18, no. 5, pp. 391–397, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Chau, A. Gopal, S. Mao, P. H. Tseng, H. Fischer, and M. J. Budoff, “Comparison of three generations of electron beam tomography on image noise and reproducibility, a phantom study,” Investigative Radiology, vol. 41, no. 6, pp. 522–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. J. Budoff, R. L. McClelland, H. Chung et al., “Reproducibility of coronary artery calcified plaque with cardiac 64-MDCT: the multi-ethnic study of atherosclerosis,” American Journal of Roentgenology, vol. 192, no. 3, pp. 613–617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. A. S. Agatston, W. R. Janowitz, F. J. Hildner, N. R. Zusmer, M. Viamonte, and R. Detrano, “Quantification of coronary artery calcium using ultrafast computed tomography,” Journal of the American College of Cardiology, vol. 15, no. 4, pp. 827–832, 1990. View at Google Scholar · View at Scopus
  77. T. L. Mitchell, J. J. Pippin, M. Wei et al., “Progression of volume of coronary artery calcification,” in Advances of Electron Beam Computed Tomography, pp. 29–35, University of Iowa Press, Iowa City, Iowa, USA, 1998. View at Google Scholar
  78. W. G. Goodman, J. Goldin, B. D. Kuizon et al., “Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis,” The New England Journal of Medicine, vol. 342, no. 20, pp. 1478–1483, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. J. R. Downs, M. Clearfield, S. Weis et al., “Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air force/texas coronary atherosclerosis prevention study,” JAMA, vol. 279, no. 20, pp. 1615–1622, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. T. R. Pedersen, “Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S),” The Lancet, vol. 344, no. 8934, pp. 1383–1389, 1994. View at Google Scholar · View at Scopus
  81. F. M. Sacks, M. A. Pfeffer, L. A. Moye et al., “The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. cholesterol and recurrent events trial investigators,” The New England Journal of Medicine, vol. 335, no. 14, pp. 1001–1009, 1996. View at Publisher · View at Google Scholar · View at Scopus
  82. R. P. Byington, J. W. Jukema, J. T. Salonen et al., “Reduction in cardiovascular events during pravastatin therapy: pooled analysis of clinical events of the pravastatin atherosclerosis intervention program,” Circulation, vol. 92, no. 9, pp. 2419–2425, 1995. View at Google Scholar · View at Scopus
  83. T. Q. Callister, P. Raggi, B. Cooil, N. J. Lippolis, and D. J. Russo, “Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography,” The New England Journal of Medicine, vol. 339, no. 27, pp. 1972–1978, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Achenbach, D. Ropers, K. Pohle et al., “Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation,” Circulation, vol. 106, no. 9, pp. 1077–1082, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Brown, “Progression of coronary calcium in the FATS study,” in Proceedings of the Electron Beam Tomography Symposium, an International Meeting, San Francisco, Calif, USA, October 2000.
  86. M. Rath and A. Niedzwiecki, “Nutritional supplement program halts progression of early coronary atherosclerosis documented by ultrafast computed tomography,” Journal of Applied Nutrition, vol. 48, no. 3, pp. 68–78, 1996. View at Google Scholar · View at Scopus
  87. Y. Arad, L. A. Spadaro, M. Roth, D. Newstein, and A. D. Guerci, “Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: The St. Francis heart study randomized clinical trial,” Journal of the American College of Cardiology, vol. 46, no. 1, pp. 166–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Schmermund, S. Achenbach, T. Budde et al., “Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial,” Circulation, vol. 113, no. 3, pp. 427–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. M. J. Budoff, J. Takasu, F. R. Flores et al., “Inhibiting progression of coronary calcification using aged garlic extract in patients receiving statin therapy: a preliminary study,” Preventive Medicine, vol. 39, no. 5, pp. 985–991, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. M. J. Budoff, N. Ahmadi, K. M. Gul et al., “Aged garlic extract supplemented with B vitamins, folic acid and l-arginine retards the progression of subclinical atherosclerosis: a randomized clinical trial,” Preventive Medicine, vol. 49, no. 2-3, pp. 101–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. V. N. Larijani, N. Ahmadi, I. Zeb, F. Khan, F. Flores, and M. Budoff, “Beneficial effects of aged garlic extract and coenzyme Q10 on vascular elasticity and endothelial function: The FAITH randomized clinical trial,” Nutrition. In press.
  92. I. Zeb, N. Ahmadi, K. Nasir et al., “Aged garlic extract and coenzyme Q10 have favorable effect on inflammatory markers and coronary atherosclerosis progression: a randomized clinical trial,” Journal of Cardiovascular Disease Research, vol. 3, no. 3, pp. 185–190, 2012. View at Google Scholar
  93. M. S. Parker, F. K. Hui, M. A. Camacho, J. K. Chung, D. W. Broga, and N. N. Sethi, “Female breast radiation exposure during CT pulmonary angiography,” American Journal of Roentgenology, vol. 185, no. 5, pp. 1228–1233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. M. J. Blaha, M. J. Budoff, and A. P. DeFilippis, “Associations between C-reactive protein, coronary artery calcium, and cardiovascular events: implications for the JUPITER population from MESA, a population-based cohort study,” The Lancet, vol. 378, no. 9792, pp. 684–692, 2011. View at Google Scholar
  95. E. P. Ficaro, P. Zanzonico, M. G. Stabin et al., “Variability in radiation dose estimates from nuclear and computed tomography diagnostic imaging,” Journal of Nuclear Cardiology, vol. 16, no. 1, article 161, 2009. View at Google Scholar
  96. M. J. Budoff and M. Gupta, “Radiation exposure from cardiac imaging procedures: Do the risks outweigh the benefits?” Journal of the American College of Cardiology, vol. 56, no. 9, pp. 712–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Voros, J. J. Rivera, D. S. Berman et al., “Guideline for minimizing radiation exposure during acquisition of coronary artery calcium scans with the use of multidetector computed tomography a report by the society for atherosclerosis imaging and prevention tomographic imaging and prevention councils in collaboration with the society of cardiovascular computed tomography,” Journal of Cardiovascular Computed Tomography, vol. 5, no. 2, pp. 75–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. K. P. Kim, A. J. Einstein, and A. B. De González, “Coronary artery calcification screening: estimated radiation dose and cancer risk,” Archives of Internal Medicine, vol. 169, no. 13, pp. 1188–1194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Nakazato, D. Dey, A. Gutstein et al., “Coronary artery calcium scoring using a reduced tube voltage and radiation dose protocol with dual-source computed tomography,” Journal of Cardiovascular Computed Tomography, vol. 3, no. 6, pp. 394–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. E. M. deGoma, R. P. Karlsberg, D. R. Judelson, and M. J. Budoff, “The underappreciated impact of heart disease,” Women's Health Issues, vol. 20, no. 5, pp. 299–303, 2010. View at Publisher · View at Google Scholar · View at Scopus