Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 181645, 10 pages
http://dx.doi.org/10.1155/2012/181645
Research Article

Supersonic Flutter Utilization for Effective Energy-Harvesting Based on Piezoelectric Switching Control

1Department of Aerospace Engineering, Tohoku University, 6-6-01 Aramaki-Aza-Aoba, Aoba-ward, Sendai 980-8579, Japan
2Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), 3-1-1 Yoshinodai, Chuo-ward, Sagamihara, Kanagawa 252-5210, Japan

Received 4 January 2012; Revised 9 March 2012; Accepted 10 March 2012

Academic Editor: Osama J. Aldraihem

Copyright © 2012 Kanjuro Makihara and Shigeru Shimose. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. H. Dowell, “Nonlinear oscillations of a fluttering plate,” AIAA Journal, vol. 4, no. 7, pp. 1267–1275, 1966. View at Google Scholar
  2. I. Lottati, “The role of structural and aerodynamic damping on the aeroelastic behavior of wings,” Journal of Aircraft, vol. 23, no. 7, pp. 606–608, 1986. View at Google Scholar · View at Scopus
  3. D. M. Tang and E. H. Dowell, “Experimental and theoretical study for nonlinear aeroelastic behavior of a flexible rotor blade,” AIAA Journal, vol. 31, no. 6, pp. 1133–1142, 1993. View at Google Scholar · View at Scopus
  4. Y. Odaka and H. Furuya, “Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter,” Structural and Multidisciplinary Optimization, vol. 30, no. 6, pp. 437–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. H. Moon and J. S. Hwang, “Panel flutter suppression with an optimal controller based on the nonlinear model using piezoelectric materials,” Composite Structures, vol. 68, no. 3, pp. 371–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. H. Han, J. Tani, and J. Qiu, “Active flutter suppression of a lifting surface using piezoelectric actuation and modern control theory,” Journal of Sound and Vibration, vol. 291, no. 3–5, pp. 706–722, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Raja, A. A. Pashilkar, R. Sreedeep, and J. V. Kamesh, “Flutter control of a composite plate with piezoelectric multilayered actuators,” Aerospace Science and Technology, vol. 10, no. 5, pp. 435–441, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Agneni, F. Mastroddi, and G. M. Polli, “Shunted piezoelectric patches in elastic and aeroelastic vibrations,” Computers and Structures, vol. 81, no. 2, pp. 91–105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Beeby and N. White, Energy Harvesting for Autonomous Systems (Smart Materials, Structures, and Systems), Artech House, 2010.
  10. T. J. Kazmierski and S. Beeby, Energy Harvesting Systems: Principles, Modeling and Applications, Springer, 2010.
  11. P. J. Cornwell, J. Goethal, J. Kowko, and M. Damianakis, “Enhancing power harvesting using a tuned auxiliary structure,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 825–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. W. P. Robbins, D. Morris, I. Marusic, and T. O. Novak, “Wind-generated electrical energy using flexible piezoelectric materials,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE '06), November 2006. View at Scopus
  13. S. D. Kwon, “A T-shaped piezoelectric cantilever for fluid energy harvesting,” Applied Physics Letters, vol. 97, no. 16, Article ID 164102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Isogai, M. Yamasaki, and T. Asaoka, “Application of CFD to design study of flutter-power-generation,” Special Publication of National Aerospace Laboratory, vol. 57, pp. 106–111, 2003 (Japanese). View at Google Scholar
  15. M. Bryant and E. Garcia, “Modeling and testing of a novel aeroelastic flutter energy harvester,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 133, no. 1, Article ID 011010, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. De Marqui, A. Erturk, and D. J. Inman, “Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes,” Journal of Intelligent Material Systems and Structures, vol. 21, no. 10, pp. 983–993, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. C. De Marqui Jr., W. G. R. Vieira, A. Erturk, and D. J. Inman, “Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 133, no. 1, Article ID 011003, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. A. Dunnmon, S. C. Stanton, B. P. Mann, and E. H. Dowell, “Power extraction from aeroelastic limit cycle oscillations,” Journal of Fluids and Structures, vol. 27, no. 8, pp. 1182–1198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. V. C. Sousa, M. De Anicezio, C. De. Marqui, and A. Erturk, “Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment,” Smart Materials and Structures, vol. 20, no. 9, article 094007, 2011. View at Google Scholar
  20. A. Erturk, W. G. R. Vieira, C. De Marqui, and D. J. Inman, “On the energy harvesting potential of piezoaeroelastic systems,” Applied Physics Letters, vol. 96, no. 18, Article ID 184103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. National Research Council Board, Sounding Rockets; Their Role in Space Research, General Books LLC, National Academy of Sciences, 2009.
  22. H. Ashley and G. Zartarian, “Piston theory—a new aerodynamic tool for the aeroelastician,” Journal of the Aeronautical Sciences, vol. 23, pp. 1109–1118, 1956. View at Google Scholar
  23. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, UK, 1971.
  24. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Mcgraw-Hill, Berkshire, UK, 1985.
  25. J. Onoda, K. Makihara, and K. Minesugi, “Energy-recycling semi-active method for vibration suppression with piezoelectric transducers,” AIAA Journal, vol. 41, no. 4, pp. 711–719, 2003. View at Google Scholar · View at Scopus
  26. M. J. Balas, “Direct velocity feedback control of large space structures,” Journal of Guidance, Control, and Dynamics, vol. 2, no. 3, pp. 252–253, 1979. View at Google Scholar · View at Scopus
  27. J. E. Cooper and T. T. Noll, “Technical evaluation report on the 1995 specialists’ meeting on advanced aeroservoelastic testing and data analysis,” in Proceedings of the Conference Proceedings CP-566 (AGARD '95), 1995.
  28. M. J. Patil, D. H. Hodges, and C. E. S. Cesnik, “Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft,” in Proceedings of the 40th Structures, Structural Dynamics and Materials Conference, AIAA-1999-1470, Saint Louis, Mo, USA, 1999.
  29. J. P. Mayuresh, H. H. Dewey, and E. S. C. Carlos, “Limit cycle oscillations of a complete aircraft,” in Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2000-1395, Atlanta, Ga, USA, 2000.