Table of Contents
Smart Materials Research
Volume 2012, Article ID 203625, 8 pages
http://dx.doi.org/10.1155/2012/203625
Research Article

Electromechanical and Dynamic Characterization of In-House-Fabricated Amplified Piezo Actuator

1Materials Science Division, National Aerospace Laboratories, Council of Scientific and Industrial Research, Bangalore 560017, India
2Structural Technologies Division, National Aerospace Laboratories, Council of Scientific and Industrial Research, Bangalore 560017, India

Received 21 November 2011; Accepted 27 December 2011

Academic Editor: Tao Li

Copyright © 2012 P. K. Panda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A diamond-shaped amplified piezo actuator (APA) fabricated using six multilayered piezo stacks with maximum displacement of 173 μm at 175 V and the amplification factor of 4.3. The dynamic characterization of the actuator was carried out at different frequencies (100 Hz–1 kHz) and at different AC voltages (20 V–40 V). The actuator response over this frequency range was found neat, without attenuation of the signal. Numerical modeling of multilayered stack actuator was carried out using empirical equations, and the electromechanical analysis was carried out using ABAQUS software. The block force of the APA was 81 N, calculated by electromechanical analysis. This is similar to that calculated by dynamic characterization method.