Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 390873, 7 pages
http://dx.doi.org/10.1155/2012/390873
Research Article

Simulating Displacement and Velocity Signals by Piezoelectric Sensor in Vibration Control Applications

1Department of Electrical Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan
2Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 701, Taiwan
3Department of Aeronautics and Astronautics, National Cheng Kung University and Mildex Corporation, Taiwan

Received 15 May 2012; Accepted 17 June 2012

Academic Editor: C. R. Bowen

Copyright © 2012 G. J. Sheu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Tadigadapa and K. Mateti, “Piezoelectric MEMS sensors: state-of-the-art and perspectives,” Measurement Science & Technology, vol. 20, no. 9, Article ID 092001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Barbarino, O. Bilgen, R. M. Ajaj, M. Friswell, and D. J. Inman, “A review of morphing aircraft,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 823–877, 2011. View at Google Scholar
  3. Q. Wang and N. Wu, “A review on structural enhancement and repair using piezoelectric materials and shape memory alloys,” Smart Materials and Structures, vol. 21, no. 1, Article ID 013001, 2012. View at Google Scholar
  4. S. M. Yang and J. W. Chiu, “Smart structures—vibration of composites with piezoelectric materials,” Composite Structures, vol. 25, no. 1–4, pp. 381–386, 1993. View at Google Scholar · View at Scopus
  5. S. M. Yang and Y. J. Lee, “Interaction of structure vibration and piezoelectric actuation,” Smart Materials and Structures, vol. 3, no. 4, pp. 494–500, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Yang and J. J. Bian, “Vibration suppression experiments on composite laminated plates using an embedded piezoelectric sensor and actuator,” Smart Materials and Structures, vol. 5, no. 4, pp. 501–507, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Yang and C. W. Chen, “Application of single mode optical fiber sensors in structural vibration suppression,” Journal of Intelligent Material Systems and Structures, vol. 7, no. 1, pp. 71–77, 1996. View at Google Scholar · View at Scopus
  8. S. M. Yang and J. A. Jeng, “Vibration control of a composite plate with embedded optical fiber sensor and piezoelectric actuator,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 5, pp. 393–400, 1997. View at Google Scholar · View at Scopus
  9. S. M. Yang and G. S. Lee, “Vibration control of smart structures by using neural networks,” Journal of Dynamic Systems, Measurement and Control, vol. 119, no. 1, pp. 34–39, 1997. View at Google Scholar · View at Scopus
  10. S. M. Yang and G. S. Lee, “System identification of smart structures using neural networks,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 10, pp. 883–890, 1997. View at Google Scholar · View at Scopus
  11. H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation,” Engineering Structures, vol. 24, no. 1, pp. 5–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. A. Jeng, S. M. Yang, and J. N. Lin, “Multi-mode control of structures by using neural networks with marquardt algorithms,” Journal of Intelligent Material Systems and Structures, vol. 8, no. 12, pp. 1035–1043, 1997. View at Google Scholar · View at Scopus
  13. S. M. Yang, C. C. Hung, and K. H. Chen, “Design and fabrication of a smart layer module in composite laminated structures,” Smart Materials and Structures, vol. 14, no. 2, pp. 315–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Yang and C. A. Jeng, “Structural vibration suppression by concurrent piezoelectric sensor and actuator,” Smart Materials and Structures, vol. 5, no. 6, pp. 806–813, 1996. View at Google Scholar · View at Scopus
  15. J. Zhao, J. Tang, and K. W. Wang, “Anomaly amplification for damage detection of periodic structures via piezoelectric transducer networking,” Smart Materials and Structures, vol. 20, no. 10, Article ID 105006, 2011. View at Google Scholar
  16. C. L. Su, S. M. Yang, and W. L. Huang, “A two-stage algorithm integrating genetic algorithm and modified Newton method for neural network training in engineering systems,” Expert Systems with Applications, vol. 38, no. 10, pp. 12189–12194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Yang, C. J. Chen, and W. L. Huang, “Structural vibration suppression by a neural-network controller with a mass-damper actuator,” Journal of Vibration and Control, vol. 12, no. 5, pp. 495–508, 2006. View at Publisher · View at Google Scholar · View at Scopus