Table of Contents
Smart Materials Research
Volume 2012, Article ID 741835, 9 pages
http://dx.doi.org/10.1155/2012/741835
Research Article

Microstereolithography of Three-Dimensional Polymeric Springs for Vibration Energy Harvesting

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111, USA

Received 17 December 2011; Accepted 13 March 2012

Academic Editor: Einar Halvorsen

Copyright © 2012 Evan Baker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Marin et al., “Wireless Sensor Networks: A Survey on Ultra-Low Power-Aware Design,” in Proceedings of the World Academy of Science, Engineering and Technology, vol. 8, pp. 44–49, 2005.
  2. L. Chao, C. Y. Tsui, and W. H. Ki, “A batteryless vibration-based energy harvesting system for ultra low power ubiquitous applications,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '07), vol. 1–11, pp. 1349–1352, May 2007. View at Scopus
  3. D. Yeager, F. Zhang, A. Zarrasvand, N. T. George, T. Daniel, and B. P. Otis, “A 9 μA, addressable Gen2 sensor tag for biosignal acquisition,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2198–2209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Yahya and J. Ben-Othman, “Towards a classification of energy aware MAC protocols for wireless sensor networks,” Wireless Communications and Mobile Computing, vol. 9, no. 12, pp. 1572–1607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Transactions on Magnetics, vol. 43, no. 11, pp. 3940–3951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystems applications,” Measurement Science and Technology, vol. 17, no. 12, article no. R01, pp. R175–R195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Umeda, K. Nakamura, and S. Ueha, “Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator,” Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 35, no. 5 B, pp. 3267–3273, 1996. View at Google Scholar · View at Scopus
  8. S. Wang, K. H. Lam, C. L. Sun et al., “Energy harvesting with piezoelectric drum transducer,” Applied Physics Letters, vol. 90, no. 11, Article ID 113506, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. M. Swallow, J. K. Luo, E. Siores, I. Patel, and D. Dodds, “A piezoelectric fibre composite based energy harvesting device for potential wearable applications,” Smart Materials and Structures, vol. 17, no. 2, Article ID 025017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Glynne-Jones, M. J. Tudor, S. P. Beeby, and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors and Actuators, A, vol. 110, no. 1-3, pp. 344–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Jin, X. Ruan, M. Yang, and M. Xu, “A hybrid fuel cell power system,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1212–1222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kulkarni, S. Roy, T. O'Donnell, S. Beeby, and J. Tudor, “Vibration based electromagnetic micropower generator on silicon,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08P511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Sun, N. Fang, D. M. Wu, and X. Zhang, “Projection micro-stereolithography using digital micro-mirror dynamic mask,” Sensors and Actuators, A, vol. 121, no. 1, pp. 113–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Manias, J. Chen, N. Fang, and X. Zhang, “Polymeric micromechanical components with tunable stiffness,” Applied Physics Letters, vol. 79, no. 11, pp. 1700–1702, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Marin, S. Bressers, and S. Priya, “Multiple cell configuration electromagnetic vibration energy harvester,” Journal of Physics D, vol. 44, no. 29, Article ID 295501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Zhou, Y. Bao, Cao W. et al., “Hiding a realistic object using a broadband terahertz invisibility cloak,” Scientific Reports, vol. 1, article 78, 2011. View at Publisher · View at Google Scholar
  17. C. Xia and N. X. Fang, “3D microfabricated bioreactor with capillaries,” Biomedical Microdevices, vol. 11, no. 6, pp. 1309–1315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Lee, C. Xia, and N. X. Fang, “First jump of microgel; Actuation speed enhancement by elastic instability,” Soft Matter, vol. 6, no. 18, pp. 4342–4345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. X. N. Jiang, C. Sun, X. Zhang, B. Xu, and Y. H. Ye, “Microstereolithography of lead zirconate titanate thick film on silicon substrate,” Sensors and Actuators A, vol. 87, no. 1-2, pp. 72–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. K. S. Ho, R. J. Bradley, D. R. Billson, and D. A. Hutchins, “Micro-stereolithography as a transducer design method,” Ultrasonics, vol. 48, no. 1, pp. 1–5, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Xia, H. Lee, and N. Fang, “Solvent-driven polymeric micro beam Device,” Journal of Micromechanics and Microengineering, vol. 20, no. 8, Article ID 085030, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Cepnik, O. Radler, S. Rosenbaum, T. Ströhla, and U. Wallrabe, “Effective optimization of electromagnetic energy harvesters through direct computation of the electromagnetic coupling,” Sensors and Actuators A, vol. 167, no. 2, pp. 416–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, vol. 26, no. 11, pp. 1131–1144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. P. Beeby, R. N. Torah, M. J. Tudor et al., “A micro electromagnetic generator for vibration energy harvesting,” Journal of Micromechanics and Microengineering, vol. 17, no. 7, article no. 007, pp. 1257–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen, “A laser-micromachined vibrational to electrical power transducer for wireless sensing systems,” in Proceedings of the 11th International Conference on Solid-State Sensors and Actuators (Transducers '01 / Eurosensors XV), vol. 1-2, pp. 38–41, Munich, Germany, 2001.
  26. P. Glynne-Jones, S. P. Beeby, and N. M. White, “Towards a piezoelectric vibration-powered microgenerator,” IEE Proceedings: Science, Measurement and Technology, vol. 148, no. 2, pp. 68–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Park, D. H. Bang, and J. Y. Park, “Micro-fabricated electromagnetic power generator to scavenge low ambient vibration,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1937–1942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Park and J. Y. Park, “A bulk micromachined electromagnetic micro-power generator for anambient vibration-energy-harvesting system,” Journal of the Korean Physical Society, vol. 58, no. 5, pp. 1468–1473, 2011. View at Google Scholar
  29. C. Serre, A. Pérez-Rodríguez, N. Fondevilla, J. R. Morante, J. Montserrat, and J. Esteve, “Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators,” Microsystem Technologies, vol. 13, no. 11-12, pp. 1655–1661, 2007. View at Publisher · View at Google Scholar
  30. B. Yang, C. Lee, W. Xiang et al., “Electromagnetic energy harvesting from vibrations of multiple frequencies,” Journal of Micromechanics and Microengineering, vol. 19, no. 3, Article ID 035001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. A. de Oliveira, P. Neves, J. T. Pereira, and A. P. Pohl , “Analysis of mechanical properties of a photonic crystal fiber bragg grating acousto-optic modulator,” in Proceedings of the 1st Workshop on Specialty Optical Fibers and Their Applications, vol. 1055, pp. 117–120, São Pedro, Brazil, 2008.