Table of Contents
Smart Materials Research
Volume 2012, Article ID 872439, 9 pages
Research Article

Synthesis and Characterization of Pb(Zr 𝟎 . πŸ“ πŸ‘ , Ti 𝟎 . πŸ’ πŸ• )O πŸ‘ -Pb(Nb 𝟏 / πŸ‘ , Zn 𝟐 / πŸ‘ )O πŸ‘ Thin Film Cantilevers for Energy Harvesting Applications

1Department of Materials Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
2Department of Materials Science, Research Center for Advanced Materials, 120 Avenue Miguel de Cervantes, Chihuahua 31109, CHIH, Mexico
3Materials Science, Texas MicroPower Inc., 7920 Beltline Road, Suite 1005, Dallas, TX 75254, USA
4Department of Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Received 16 December 2011; Accepted 18 January 2012

Academic Editor: Ma Jan

Copyright © 2012 E. M. A. Fuentes-Fernandez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) O 3 βˆ’ Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.