Table of Contents
Smart Materials Research
Volume 2013 (2013), Article ID 201631, 13 pages
http://dx.doi.org/10.1155/2013/201631
Research Article

Process Chain Modelling and Analysis for the High-Volume Production of Thermoplastic Composites with Embedded Piezoceramic Modules

Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Holbeinstraße 3, 01307 Dresden, Germany

Received 5 October 2012; Revised 14 January 2013; Accepted 25 February 2013

Academic Editor: Marcelo J. Dapino

Copyright © 2013 W. Hufenbach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. F. Crawley and J. de Luis, “Use of piezoceramic actuators as elements of intelligent structures,” AIAA Journal, vol. 25, no. 10, pp. 1373–1385, 1987. View at Google Scholar · View at Scopus
  2. R. F. Gibson, “A review of recent research on mechanics of multifunctional composite materials and structures,” Composite Structures, vol. 92, no. 12, pp. 2793–2810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Nuffer, T. Pfeiffer, N. Flaschenträger et al., “Piezoelectric composites: application and reliability in adaptronics,” in Proceedings of the International Symposium on Piezocomposite Applications, pp. 24–25, Dresden, Germany, September 2009.
  4. S. Adhikari, M. I. Friswell, and D. J. Inman, “Piezoelectric energy harvesting from broadband random vibrations,” Smart Materials and Structures, vol. 18, no. 11, Article ID 115005, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Edery-Azulay and H. Abramovich, “Active damping of piezo-composite beams,” Composite Structures, vol. 74, no. 4, pp. 458–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Moro and D. Benasciutti, “Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers,” Smart Materials and Structures, vol. 19, no. 11, Article ID 115011, 12 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Y. Tang, C. Winkelmann, W. Lestari, and V. La Saponara, “Composite structural health monitoring through use of embedded PZT sensors,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 8, pp. 739–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. R. Viswamurthy and R. Ganguli, “Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control,” Sensors and Actuators A, vol. 135, no. 2, pp. 801–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Daynes, P. M. Weaver, and J. A. Trevarthen, “A morphing composite air inlet with multiple stable shapes,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 9, pp. 961–973, 2011. View at Publisher · View at Google Scholar
  10. W. Hufenbach, M. Gude, and A. Czulak, “Actor-initiated snap-through of unsymmetric composites with multiple deformation states,” Journal of Materials Processing Technology, vol. 175, no. 1–3, pp. 225–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gude, Modellierung von faserverstärkten Verbundwerkstoffen und funktionsintegrierenden Leichtbaustrukturen für komplexe Beanspruchungen, Technische Universität Dresden, Habilitation, Dresden, Germany, 2008.
  12. N. Modler, Nachgiebigkeitsmechanismen aus Textilverbunden mit integrierten aktorischen Elementen [Dissertation], Technische Universität Dresden, Dresden, Germany, 2008.
  13. A. F. Arrieta, D. J. Wagg, and S. A. Neild, “Dynamic snap-through for morphing of bi-stable composite plates,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 2, pp. 103–112, 2001. View at Publisher · View at Google Scholar
  14. W. Wilkie, “Method of fabricating a piezoelectric composite apparatus,” U.S. Patent No. 6. 629. 341, 2003.
  15. W. Wilkie and R. Bryant, “Piezoelectric macro-fiber composite actuator and manufacturing method,” European Patent EP 1 983 584 A2, 2008.
  16. R. B. Williams, B. W. Grimsley, D. J. Inman, and W. K. Wilkie, “Manufacturing and cure kinetics modeling for macro fiber composite actuators,” Journal of Reinforced Plastics and Composites, vol. 23, no. 16, pp. 1741–1754, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Hufenbach, M. Gude, and T. Heber, “Embedding versus adhesive bonding of adapted piezoceramic modules for function-integrative thermoplastic composite structures,” Composites Science and Technology, vol. 71, no. 8, pp. 1132–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Heber, Integrationsgerechte Piezokeramik-Module und großserienfähige Fertigungstechnologien für multifunktionale Thermoplastverbundstrukturen [Dissertation], Technische Universität Dresden, Dresden, Germany, 2011.
  19. W. Hufenbach, M. Gude, and T. Heber, “Design and testing of novel piezoceramic modules for adaptive thermoplastic composite structures,” Smart Materials and Structures, vol. 18, no. 4, Article ID 045012, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Hufenbach, M. Gude, N. Modler, T. Heber, A. Winkler, and J. Friedrich, “Processing studies for the development of a robust manufacture process for active composite structures with matrix adapted piezoceramic modules,” Composites, vol. 9, no. 2, pp. 133–137, 2009. View at Google Scholar
  21. W. Hufenbach, M. Gude, N. Modler, T. Heber, and T. Tyczynski, “Sensitivity analysis for the process integrated online polarization of piezoceramic modules in thermoplastic composites,” Smart Materials and Structures, vol. 19, no. 10, Article ID 105022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Scheithauer, M. Flössel, S. Uhlig, A. Schönecker, S. Gebhardt, and A. Michaelis, “Piezokeramische Fasern, Faserkomposite und LTCC-Module zur Integration in Leichtbaustrukturen,” in Verbundwerkstoffe: 17. Symposium Verbundwerkstoffe und Werkstoffverbunde, pp. 592–600, Wiley-VCH, New York, NY, USA, 2009. View at Google Scholar
  23. M. Gude, W. Hufenbach, N. Modler et al., “Process development for high volume manufacture of thermoplastic composites with integrated piezoceramic modules,” in Proceedings of the CRC/TR39 3rd Scientific Symposium, pp. 59–64, Chemnitz, Germany, October 2011.
  24. K. Großmann and H. Wiemer, “Reproduzierbare Fertigung in innovativen Prozessketten: Besonderheiten innovativer Prozessketten und methodische Ansätze für ihre Beschreibung, Analyse und Führung (Teil 1),” ZWF—Zeitschrift Für Wirtschaftlichen Fabrikbetrieb, vol. 10, pp. 855–859, 2010. View at Google Scholar