Table of Contents
Smart Materials Research
Volume 2013, Article ID 831017, 21 pages
http://dx.doi.org/10.1155/2013/831017
Review Article

MR- and ER-Based Semiactive Engine Mounts: A Review

1Mechanical Engineering, University of Toledo, Toledo, OH 43606, USA
2Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA
3Mechanical Engineering, California State University Fresno, Fresno, CA 93740, USA
4Cinetic DyAG Corporation, 23400 Halsted Road, Farmington Hills, MI 48335, USA

Received 9 October 2012; Accepted 7 November 2012

Academic Editor: Mehdi Ahmadian

Copyright © 2013 Mohammad Elahinia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. DeCicco and F. Fung, “Global warming on the road—the climate impact of America’s automobiles,” http://www.edf.org/documents/5301_Globalwarmingontheroad.pdf.
  2. K. Kumagai, M. Fujiwara, M. Segawa, R. Sato, and Y. Tamura, “Development of a 6-cylinder gasoline engine with new variable cylinder management technology,” in Proceedings of the SAE World Congress and Exhibition, April 2008, paper no. 2008-01-0610.
  3. L. V. Pérez, G. R. Bossio, D. Moitre, and G. O. García, “Optimization of power management in an hybrid electric vehicle using dynamic programming,” Mathematics and Computers in Simulation, vol. 73, no. 1–4, pp. 244–254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Ito, S. Tomura, and S. Sasaki, “Development of vibration reduction motor control for hybrid vehicles,” in Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON '07), pp. 516–521, November 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. K. Ahn, M. Ahmadian, and S. Morishita, “On the design and development of a Magneto-Rheological mount,” Vehicle System Dynamics, vol. 32, no. 2, pp. 199–216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Abuhaiba, Mathematical modeling and analysis of a variable displacement hydraulic bent axis pump linked to high pressure and low pressure accumulators [Ph.D. Dissertation], Mechanical, Industrial and Manufacturing Department, University of Toledo, 2009.
  7. A. Agrawal, C. Ciocanel, T. Martinez et al., “A bearing application using magnetorheological fluids,” Journal of Intelligent Material Systems and Structures, vol. 13, no. 10, pp. 667–673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Carlson and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, no. 4, pp. 555–569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ay, M. F. Golnaraghi, and A. Khajepour, “Investigation on a semi-active hydro mount using Mr Fluid,” in Proceedings of the NATO, Symposium on Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles, Braunschweig, Germany, May 2000.
  10. Y. K. Ahn, B. S. Yang, M. Ahmadian, and S. Morishita, “A small sized variable-damping mount using magneto-rheological fluid,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 2, pp. 127–133, 2005. View at Google Scholar
  11. S. R. Hong and S. B. Choi, “Vibration control of a structural system using magneto-rheological fluid mount,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 11-12, pp. 931–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. Delphi Corp., Delphi Magneto-Rheological (MR) Powertrain Mount, 2005.
  13. D. E. Barber and J. D. Carlson, “Performance characteristics of prototype MR engine mounts containing LORD glycol MR fluids,” in Proceedings of the 11th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, Dresden, Germany, 2009.
  14. H. Mansour, S. Arzanpour, M. F. Golnaraghi, and A. M. Parameswaran, “Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber,” Vehicle System Dynamics, vol. 49, no. 3, pp. 449–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Nguyen, A novel semi-active magnetorheological mount for vibration isolation [Dissertation], 2009.
  16. S. R. Hong, S. B. Choi, W. J. Jung, and W. B. Jeong, “Vibration isolation of structural systems using squeeze mode ER mounts,” Journal of Intelligent Material Systems and Structures, vol. 13, no. 7-8, pp. 421–424, 2002. View at Google Scholar · View at Scopus
  17. R. Stanway, J. L. Sproston, M. J. Prendergast, J. R. Case, and C. E. Wilne, “ER fluids in the squeeze-flow mode: an application to vibration isolation,” Journal of Electrostatics, vol. 28, no. 1, pp. 89–94, 1992. View at Google Scholar · View at Scopus
  18. E. W. Williams, S. G. Rigby, J. L. Sproston, and R. Stanway, “Electrorheological fluids applied to an automotive engine mount,” Journal of Non-Newtonian Fluid Mechanics, vol. 47, pp. 221–238, 1993. View at Google Scholar · View at Scopus
  19. J. L. Sproston, R. Stanway, M. J. Prendergast, J. R. Case, and C. E. Wilne, “Prototype automotive engine mount using electrorheological fluids,” Journal of Intelligent Material Systems and Structures, vol. 4, no. 3, pp. 418–419, 1993. View at Google Scholar · View at Scopus
  20. J. L. Sproston, R. Stanway, E. W. Williams, and S. Rigby, “The electrorheological automotive engine mount,” Journal of Electrostatics, vol. 32, no. 3, pp. 253–259, 1994. View at Google Scholar · View at Scopus
  21. W. J. Jung, W. B. Jeong, S. R. Hong, and S. B. Choi, “Vibration control of a flexible beam structure using squeeze-mode ER mount,” Journal of Sound and Vibration, vol. 273, no. 1-2, pp. 185–199, 2004. View at Google Scholar · View at Scopus
  22. S. R. Hong, S. B. Choi, and D. Y. Lee, “Comparison of vibration control performance between flow and squeeze mode ER mounts: experimental work,” Journal of Sound and Vibration, vol. 291, no. 3–5, pp. 740–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. B. Choi, Y. T. Choi, C. C. Cheong, and Y. S. Jeon, “Performance evaluation of a mixed mode ER engine mount via hardware-in-the-loop simulation,” Journal of Intelligent Material Systems and Structures, vol. 10, no. 8, pp. 671–677, 1999. View at Google Scholar · View at Scopus
  24. S. B. Choi and H. J. Song, “Vibration control of a passenger vehicle utilizing a semi-active ER engine mount,” Vehicle System Dynamics, vol. 37, no. 3, pp. 193–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. Lim, J. S. Park, S. B. Choi, and Y. P. Park, “Vibration control of a CD-ROM feeding system using electro-rheological mounts,” Journal of Intelligent Material Systems and Structures, vol. 12, no. 9, pp. 629–637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. R. I. Woods and K. L. Lawrence, Modeling and Simulation of Dynamic Systems, Prentice Hall, London, UK, 1997.
  27. A. V. Srinivasan and M. D. McFarland, Smart Structures: Analysis and Design, Cambridge University Press, New York, NY, USA, 2001.
  28. H. Adiguna, M. Tiwari, R. Singh, H. E. Tseng, and D. Hrovat, “Transient response of a hydraulic engine mount,” Journal of Sound and Vibration, vol. 268, no. 2, pp. 217–248, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. H. Koo, M. Ahmadian, and M. Elahinia, “Semi-active controller dynamics in a magneto-rheological tuned vibration absorber,” in Smart Structures and Materials: Damping and Isolation, vol. 5760 of Proceedings of SPIE, pp. 69–76, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Unsal, C. Niezrecki, and C. D. Crane :, “Six DOF vibration control using magnetorheological technology,” in Symposium on Smart Structures and Materials, Proceedings of SPIE, San Diego, Calif, USA, February 2006.
  31. M. Ahmadian, “On the development of fuzzy skyhook control for semiactive magneto rheological systems,” in Smart Structures and Materials: Damping and Isolation, vol. 5760 of Proceedings of SPIE, pp. 268–282, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Wang, F. Gordaninejad, and G. Hitchcock, “A magneto-rheological fluid-elastomer vibration isolator,” in Smart Structures and Materials: Damping and Isolation, vol. 5760 of Proceedings of SPIE, pp. 217–225, March 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. F. Ali and A. Ramaswamy, “Hybrid structural control using magnetorheological dampers for baseisolated structures,” Smart Materials and Structures, vol. 18, no. 5, Article ID 055011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. . Wang, M. Elahinia, and T. Nguyen, “Displacement and force control of a quarter car using a mixed mode MR mount,” Shock and Vibration. In press. View at Publisher · View at Google Scholar
  35. D. H. Wang and W. H. Liao, “Modeling and control of magnetorheological fluid dampers using neural networks,” Smart Materials and Structures, vol. 14, no. 1, pp. 111–126, 2005. View at Publisher · View at Google Scholar · View at Scopus