Table of Contents
Smart Materials Research
Volume 2013 (2013), Article ID 840413, 8 pages
http://dx.doi.org/10.1155/2013/840413
Research Article

Functionality Evaluation of a Novel Smart Expandable Pedicle Screw to Mitigate Osteoporosis Effect in Bone Fixation: Modeling and Experimentation

1The University of Toledo, Toledo, OH 43606-3390, USA
2NiTinol Commercialization Accelerator Dynamic and Smart Systems Laboratory, The University of Toledo, Toledo, OH 43606-3390, USA
3Engineering Center for Orthopedic Research Excellence (E-CORE), The University of Toledo, Toledo, OH 43606-3390, USA

Received 9 February 2013; Accepted 7 May 2013

Academic Editor: David Vokoun

Copyright © 2013 Ahmadreza Eshghinejad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper proposes a novel expandable-retractable pedicle screw and analyzes its functionality. A specially designed pedicle screw is described which has the ability to expand and retract using nitinol elements. The screw is designed to expand in body temperature and retract by cooling the screw. This expansion-retraction function is verified in an experiment designed in larger scale using a nitinol antagonistic assembly. The results of this experiment are compared to the results of a finite element model developed in Abaqus in combination with a user material subroutine (UMAT). This code has been developed to analyze the nonlinear thermomechanical behavior of shape memory alloy materials. The functionality of the proposed screw is evaluated with simulation and experimentation in a pullout test as well. The pullout force of a normal screw inserted in a normal bone was simulated, and the result is compared with the results of the expandable screw in osteoporotic bone. Lastly, strength of the designed pedicle screw in a foam block is also verified with experiment. The reported finite element simulations and experiments are the proof for the concept of nitinol expandable-retractable elements on a pedicle screw which validate the functionality in a pullout test.