Table of Contents
Smart Materials Research
Volume 2013, Article ID 865981, 7 pages
http://dx.doi.org/10.1155/2013/865981
Research Article

Semi-Active Pulse-Switching Vibration Suppression Using Sliding Time Window

Mechanical Department, Razi University, Kermanshah 6714967346, Iran

Received 29 November 2012; Revised 7 March 2013; Accepted 13 March 2013

Academic Editor: Chris Bowen

Copyright © 2013 S. Mohammadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The performance of pulse-switching vibration control technique is investigated using a new method for switching sequence, in order to enhance the vibration damping. The control law in this method which was developed in the field of piezoelectric damping is based on triggering the inverting switch on each extremum of the produced voltage (or displacement); however, its efficiency in the case of random excitation is arguable because of the local extremum detection process. The new proposed method for switching sequence is only based on the fact that the triggering voltage level was determined using windowed statistical examination of the deflection signal. Results for a cantilever beam excited by different excitation forces, such as stationary and nonstationary random samples, and pulse forces are presented. A significant decrease in vibration energy and also the robustness of this method are demonstrated.