Scientific Programming

Scientific Programming / 2009 / Article
Special Issue

High Performance Computing with the Cell Broadband Engine

View this Special Issue

Open Access

Volume 17 |Article ID 408370 | 22 pages |

Building High-Resolution Sky Images Using the Cell/B.E.


The performance potential of the Cell/B.E., as well as its availability, have attracted a lot of attention from various high-performance computing (HPC) fields. While computation intensive kernels proved to be exceptionally well suited for running on the Cell, irregular data-intensive applications are usually considered as poor matches. In this paper, we present our complete solution for enabling such a data-intensive application to run efficiently on the Cell/B.E. processor. Specifically, we target radioastronomy data gridding and degridding, two resembling imaging filters based on convolutional resampling. Our solution is based on building a high-level application model, used to evaluate parallelization alternatives. Next, we choose the one with the best performance potential, and we gradually exploit this potential by applying platform-specific and application-specific optimizations. After several iterations, our target application shows a speed-up factor between 10 and 20 on a dual-Cell blade when compared with the original application running on a commodity machine. Given these results, and based on our empirical observations, we are able to pinpoint a set of ten guidelines for parallelizing similar applications on the Cell/B.E. Finally, we conclude the Cell/B.E. can provide high performance for data-intensive applications at the price of increased programming efforts and with a significant aid from aggressive application-specific optimizations.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

284 Views | 251 Downloads | 7 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.