Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 17 (2009), Issue 4, Pages 285-294

ePRO-MP: A Tool for Profiling and Optimizing Energy and Performance of Mobile Multiprocessor Applications

Wonil Choi, Hyunhee Kim, Wook Song, Jiseok Song, and Jihong Kim

School of Computer Science and Engineering Seoul National University, Seoul, Korea

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


For mobile multiprocessor applications, achieving high performance with low energy consumption is a challenging task. In order to help programmers to meet these design requirements, system development tools play an important role. In this paper, we describe one such development tool, ePRO-MP, which profiles and optimizes both performance and energy consumption of multi-threaded applications running on top of Linux for ARM11 MPCore-based embedded systems. One of the key features of ePRO-MP is that it can accurately estimate the energy consumption of multi-threaded applications without requiring a power measurement equipment, using a regression-based energy model. We also describe another key benefit of ePRO-MP, an automatic optimization function, using two example problems. Using the automatic optimization function, ePRO-MP can achieve high performance and low power consumption without programmer intervention. Our experimental results show that ePRO-MP can improve the performance and energy consumption by 6.1% and 4.1%, respectively, over a baseline version for the co-running applications optimization example. For the producer-consumer application optimization example, ePRO-MP improves the performance and energy consumption by 60.5% and 43.3%, respectively over a baseline version.