Scientific Programming

Scientific Programming / 2012 / Article
Special Issue

A New Overview of the Trilinos Project – Part 2

View this Special Issue

Open Access

Volume 20 |Article ID 818262 | https://doi.org/10.3233/SPR-2012-0351

Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Steven J. Owen, Christopher M. Siefert, Matthew L. Staten, "Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations", Scientific Programming, vol. 20, Article ID 818262, 19 pages, 2012. https://doi.org/10.3233/SPR-2012-0351

Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations

Abstract

A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012), 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertainty quantification results for a 3D PDE application.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views423
Downloads448
Citations