Abstract

In generic programming, software components are parameterized on types. When available, a static specialization mechanism allows selecting, for a given set of parameters, a more suitable version of a generic component than its primary version. The normal C++ template specialization mechanism is based on the type pattern of the parameters, which is not always the best way to guide the specialization process: type patterns are missing some information on types that could be relevant to define specializations. The notion of a concept, which represents a set of requirements (including syntactic and semantic aspects) for a type, is known to be an interesting approach to control template specialization. For many reasons, concepts were dropped from C++11 standard, this article therefore describes template metaprogramming techniques for declaring concepts, modeling relationships (meaning that a type fulfills the requirements of a concept), and refinement relationships (meaning that a concept refines the requirements of another concept). From a taxonomy of concepts and template specializations based on concepts, an automatic mechanism selects the most appropriate version of a generic component for a given instantiation. Our purely library-based solution is also open for retroactive extension: new concepts, relationships, and template specializations can be defined at any time; such additions will then be picked up by the specialization mechanism.