Table of Contents Author Guidelines Submit a Manuscript
Stroke Research and Treatment
Volume 2011, Article ID 131834, 7 pages
http://dx.doi.org/10.4061/2011/131834
Review Article

Limited Therapeutic Time Windows of Mild-to-Moderate Hypothermia in a Focal Ischemia Model in Rat

1Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305-5327, USA
2Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305-5327, USA

Received 18 January 2011; Revised 8 April 2011; Accepted 2 May 2011

Academic Editor: Fred Colbourne

Copyright © 2011 Heng Zhao and Gary Steinberg. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Busto, W. D. Dietrich, M. Y. Globus, and M. D. Ginsberg, “The importance of brain temperature in cerebral ischemic injury,” Stroke, vol. 20, no. 8, pp. 1113–1114, 1989. View at Google Scholar · View at Scopus
  2. R. Busto, W. D. Dietrich, M. Globus, I. Valdes, P. Scheinberg, and M. D. Ginsberg, “Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury,” Journal of Cerebral Blood Flow — Metabolism, vol. 7, no. 6, pp. 729–738, 1987. View at Google Scholar · View at Scopus
  3. Hypothermia-after-Cardiac-Arrest-Study-Group, “Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest,” The New England Journal of Medicine, vol. 346, no. 8, pp. 549–556, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. D. Gluckman, J. S. Wyatt, D. Azzopardi et al., “Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial,” The Lancet, vol. 365, no. 9460, pp. 663–670, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Shankaran, A. R. Laptook, R. A. Ehrenkranz et al., “Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy,” The New England Journal of Medicine, vol. 353, no. 15, pp. 1574–1584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Zhao, G. K. Steinberg, and R. M. Sapolsky, “General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage,” Journal of Cerebral Blood Flow — Metabolism, vol. 27, no. 12, pp. 1879–1894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. F. Hamann, D. Burggraf, H. K. Martens et al., “Mild to moderate hypothermia prevents microvascular basal lamina antigen loss in experimental focal cerebral ischemia,” Stroke, vol. 35, no. 3, pp. 764–769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. P. Huang, L. F. Zhou, and G. Y. Yang, “The effect of extending mild hypothermia on focal cerebral ischemia and reperfusion in the rat,” Neurological Research, vol. 20, no. 1, pp. 57–62, 1998. View at Google Scholar · View at Scopus
  9. F. P. Huang, L. F. Zhou, and G. Y. Yang, “Effects of mild hypothermia on the release of regional glutamate and glycine during extended transient focal cerebral ischemia in rats,” Neurochemical Research, vol. 23, no. 7, pp. 991–996, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Rha and J. L. Saver, “The impact of recanalization on ischemic stroke outcome: a meta-analysis,” Stroke, vol. 38, no. 3, pp. 967–973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Saqqur, G. Tsivgoulis, C. A. Molina et al., “Symptomatic intracerebral hemorrhage and recanalization after IV rt-PA: a multicenter study,” Neurology, vol. 71, no. 17, pp. 1304–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. M. Hemmen, R. Raman, K. Z. Guluma et al., “Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results,” Stroke, vol. 41, no. 10, pp. 2265–2270, 2010. View at Google Scholar
  13. E. H. Lo and G. K. Steinberg, “Effects of hypothermia on evoked potentials, magnetic resonance imaging, and blood flow in focal ischemia in rabbits,” Stroke, vol. 23, no. 6, pp. 889–893, 1992. View at Google Scholar · View at Scopus
  14. C. M. Maier, K. V. B. Ahern, M. L. Cheng, J. E. Lee, M. A. Yenari, and G. K. Steinberg, “Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation,” Stroke, vol. 29, no. 10, pp. 2171–2180, 1998. View at Google Scholar · View at Scopus
  15. Z. Zhang, R. A. Sobel, D. Cheng, G. K. Steinberg, and M. A. Yenari, “Mild hypothermia increases Bcl-2 protein expression following global cerebral ischemia,” Molecular Brain Research, vol. 95, no. 1-2, pp. 75–85, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Zhao, T. Shimohata, J. Q. Wang et al., “Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats,” Journal of Neuroscience, vol. 25, no. 42, pp. 9794–9806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Zhao, M. A. Yenari, R. M. Sapolsky, and G. K. Steinberg, “Mild postischemic hypothermia prolongs the time window for gene therapy by inhibiting cytochrome C release,” Stroke, vol. 35, no. 2, pp. 572–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Lee, H. Zhao, C. M. Maier, and G. K. Steinberg, “The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke,” Journal of Cerebral Blood Flow — Metabolism, vol. 29, no. 9, pp. 1589–1600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Zhao, J. Wang, T. Shimohata et al., “Conditions of protection by hypothermia and effects on apoptotic pathways in a rat model of permanent middle cerebral artery occlusion,” Journal of Neurosurgery, vol. 107, no. 3, pp. 636–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. T. Chen, C. Y. Hsu, E. L. Hogan, H. Maricq, and J. D. Balentine, “A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction,” Stroke, vol. 17, no. 4, pp. 738–743, 1986. View at Google Scholar · View at Scopus
  21. H. Zhao, M. A. Yenari, D. Cheng, O. L. Barreto-Chang, R. M. Sapolsky, and G. K. Steinberg, “Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat,” Journal of Cerebral Blood Flow & Metabolism, vol. 24, no. 6, pp. 681–692, 2004. View at Google Scholar
  22. H. Zhao, M. A. Yenari, D. Cheng, R. M. Sapolsky, and G. K. Steinberg, “Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity,” Journal of Neurochemistry, vol. 85, no. 4, pp. 1026–1036, 2003. View at Google Scholar · View at Scopus
  23. T. Shimohata, H. Zhao, and G. K. Steinberg, “Epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model,” Stroke, vol. 38, no. 2, pp. 375–380, 2007. View at Google Scholar
  24. T. Shimohata, H. Zhao, J. H. Sung, G. Sun, D. Mochly-Rosen, and G. K. Steinberg, “Suppression of deltaPKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia,” Journal of Cerebral Blood Flow & Metabolism, vol. 27, no. 8, pp. 1463–1475, 2007. View at Google Scholar
  25. X. Gao, C. Ren, and H. Zhao, “Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning,” Journal of Neuroscience Research, vol. 86, no. 11, pp. 2505–2511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Zhao, R. M. Sapolsky, and G. K. Steinberg, “Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats,” Journal of Cerebral Blood Flow & Metabolism, vol. 26, no. 9, pp. 1114–1121, 2006. View at Google Scholar
  27. T. M. Hemmen and P. D. Lyden, “Hypothermia after acute ischemic stroke,” Journal of Neurotrauma, vol. 26, no. 3, pp. 387–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. H. B. van der Worp, M. R. MacLeod, and R. Kollmar, “Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials,” Journal of Cerebral Blood Flow — Metabolism, vol. 30, no. 6, pp. 1079–1093, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. B. van der Worp, E. S. Sena, G. A. Donnan, D. W. Howells, and M. R. Macleod, “Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis,” Brain, vol. 130, no. 12, pp. 3063–3074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Yenari and T. M. Hemmen, “Therapeutic hypothermia for brain ischemia: where have we come and where do we go?” Stroke, vol. 41, pp. S72–S74, 2010. View at Google Scholar
  31. H. Minamisawa, C. H. Nordstrom, M. L. Smith, and B. K. Siesjo, “The influence of mild body and brain hypothermia on ischemic brain damage,” Journal of Cerebral Blood Flow — Metabolism, vol. 10, no. 3, pp. 365–374, 1990. View at Google Scholar · View at Scopus
  32. H. Zhao, R. M. Sapolsky, and G. K. Steinberg, “Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke,” Molecular Neurobiology, vol. 34, no. 3, pp. 249–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Bright and D. Mochly-Rosen, “The role of protein kinase C in cerebral ischemic and reperfusion injury,” Stroke, vol. 36, no. 12, pp. 2781–2790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Colbourne, D. Corbett, Z. Zhao, J. Yang, and A. M. Buchan, “Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model,” Journal of Cerebral Blood Flow — Metabolism, vol. 20, no. 12, pp. 1702–1708, 2000. View at Google Scholar · View at Scopus
  35. D. L. Clark, M. Penner, I. M. Orellana-Jordan, and F. Colbourne, “Comparison of 12, 24 and 48 h of systemic hypothermia on outcome after permanent focal ischemia in rat,” Experimental Neurology, vol. 212, no. 2, pp. 386–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Colbourne and D. Corbett, “Delayed and prolonged post-ischemic hypothermia is neuroprotective in the gerbil,” Brain Research, vol. 654, no. 2, pp. 265–272, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. H. den Hertog, B. van der Worp, M. van Gemert, and D. Dippel, “Therapeutic hypothermia in acute ischemic stroke,” Expert Review of Neurotherapeutics, vol. 7, no. 2, pp. 155–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. W. Krieger, S. Schwab, and L. P. Kammersgard, Focal Cerebral Ischemia: Clinical Studies, Springer, Berlin, Germany, 1st edition, 2005.