Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2008 (2008), Article ID 325071, 17 pages
http://dx.doi.org/10.1155/2008/325071
Research Article

Approaches, Relevant Topics, and Internal Method for Uncertainty Evaluation in Predictions of Thermal-Hydraulic System Codes

Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, DIMNP, Italy

Received 31 May 2007; Accepted 26 October 2007

Academic Editor: Cesare Frepoli

Copyright © 2008 Alessandro Petruzzi and Francesco D'Auria. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The evaluation of uncertainty constitutes the necessary supplement of best-estimate calculations performed to understand accident scenarios in water-cooled nuclear reactors. The needs come from the imperfection of computational tools, on the one side, and the interest in using such a tool to get more precise evaluation of safety margins. The paper reviews the salient features of three independent approaches for estimating uncertainties associated with predictions of complex system codes. Namely, the propagations of code input error and calculation output error constitute the keywords for identifying the methods of current interest for industrial applications, while the adjoint sensitivity-analysis procedure and the global adjoint sensitivity-analysis procedure, extended to performing uncertainty evaluation in conjunction with concepts from data adjustment and assimilation, constitute the innovative approach. Throughout the developed methods, uncertainty bands can be derived (both upper and lower) for any desired quantity of the transient of interest. For one case, the uncertainty method is coupled with the thermal-hydraulic code to get the code with capability of internal assessment of uncertainty, whose features are discussed in more detail.