Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2009, Article ID 797461, 13 pages
Research Article

Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

1Brookhaven National Laboratory, Energy Sciences and Technology Department, P.O. Box 5000, Upton, NY 11973-5000, USA
2Argonne National Laboratory, Nuclear Engineering Division, 9700 S. Cass Avenue, Argonne, IL 60439, USA

Received 30 January 2009; Accepted 3 June 2009

Academic Editor: Colin Mitchell

Copyright © 2009 Lap-Yan Cheng and Thomas Y. C. Wei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow were evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.