Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 149089, 6 pages
Research Article

A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avenida. Complutense 40. Ed. 17, 28040 Madrid, Spain

Received 15 November 2011; Accepted 30 January 2012

Academic Editor: Alberto Talamo

Copyright © 2012 F. Álvarez-Velarde and E. M. González-Romero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. González-Romero, H. A. Abderrahim, C. Fazio et al., “Rational and Added Value of P&T for Waste Management Policies”, Deliverable 1.1, PATEROS project, EU 6th FP FI6W-Contract number 036418, 2007.
  2. OECD Nuclear Energy Agency, Advanced Nuclear Fuel Cycles and Radioactive Waste Management, Nuclear Development, NEA/OECD No. 5990, Les Moulineaux, France, 2006.
  3. “RED-IMPACT synthesis report,” Tech. Rep. 978-3-89336-538-8, Forschungszentrum Julich, Berlin, Germany, 2008.
  4. OECD Nuclear Energy Agency, “Nuclear fuel cycle transition scenario studies. status report,” Tech. Rep. 6194, Nuclear Development, NEA/OECD, Les Moulineaux, France, 2009. View at Google Scholar
  5. S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133–181, 1922. View at Google Scholar
  6. F. Álvarez-Velarde, P. T. León, and E. M. González-Romero, “EVOLCODE2, a combined neutronics and burn-up evolution simulation code,” in Proceedings of the 9th Information Exchange Meeting on Actinide and Fission Product P&T, OECD Nuclear Energy Agency, Nîmes, France, 2007.
  7. F. Álvarez-Velarde, Development of a computational tool for the simulation of innovative transmutation systems, Ph.D. thesis, University of Córdoba, Andalusia, Spain, 2011.
  8. J. S. Hendricks, G. W. McKinney, H. R. Trellue et al., MCNPX, Version 2.6.b, LA-UR-06-3248, Los Alamos National Laboratory, Los Alamos, NM, USA, 2006.
  9. A. G. Croff, “ORIGEN2: a versatile computer code for calculating the nuclide compositions and characteristics of nuclear materials,” Nuclear Technology, vol. 62, pp. 335–352, 1983. View at Google Scholar
  10. J. Sanz, O. Cabellos, and N. García-Herranz, ACAB Inventory Code for Nuclear Applications: User's Manual V.2008, NEA-1839/02, 2008.
  11. OECD Nuclear Energy Agency, “Accelerator-driven systems (ADS) and fast reactors (FR) in advanced nuclear fuel cycles. A comparative study,” Tech. Rep. number, Nuclear Development, NEA/OECD, Les Moulineaux, France, 2002. View at Google Scholar
  12. L. Boucher, “Detailed description of selected fuel cycle scenarios,” Deliverable 1.4, RED-IMPACT Project, EU 6th FP FI6W-CT-2004-002408, 2007.
  13. M. B. Monagan, K. O. Geddes, K. M. Heal et al., Maple 13 Advanced Programming Guide, Maplesoft, Waterloo, ON, Canada, 2009.
  14. S. Wolfram, The Mathematica Book, Wolfram Media, Champaign, Ill, USA, 5th edition, 2003.