Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 239319, 9 pages
http://dx.doi.org/10.1155/2012/239319
Research Article

PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

Nuclear Energy and Safety Research Department, Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland

Received 18 April 2011; Accepted 25 August 2011

Academic Editor: Klaus Umminger

Copyright © 2012 Domenico Paladino and Jörg Dreier. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Huggenberger, C. Aubert, T. Bandurski et al., “ESBWR related passive decay heat removal tests in PANDA,” in Proceedings of the 7th International Conference on Nuclear Engineering (ICONE '99), Tokyo, Japan, 1999.
  2. J. Dreier, C. Aubert, M. Huggenberger, H. J. Strassberger, J. Meseth, and G. Yadigaroglu, “The PANDA Tests for the SWR1000 passive containment cooling system,” in Proceedings of the 7th International Conference on Nuclear Engineering (ICONE '99), Tokyo, Japan, 1999.
  3. D. Paladino, O. Auban, M. Huggenberger, and M. Andreani, “Investigation of light gas effects on passive containment cooling system in ALWR,” in Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '03), Seoul, Korea, 2003.
  4. O. Auban, D. Paladino, and R. Zboray, “Experimental investigation of natural-circulation flow behavior under low-power/low-pressure conditions in the large-scale panda facility,” Nuclear Technology, vol. 148, no. 3, pp. 294–312, 2004. View at Google Scholar · View at Scopus
  5. O. Auban, R. Zboray, and D. Paladino, “Investigation of large-scale gas mixing and stratification phenomena related to LWR containment studies in the PANDA facility,” Nuclear Engineering and Design, vol. 237, no. 4, pp. 409–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Paladino, R. Zboray, P. Benz, and M. Andreani, “Three-gas mixture plume inducing mixing and stratification in a multi-compartment containment,” Nuclear Engineering and Design, vol. 240, no. 2, pp. 210–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Paladino, R. Zboray, and O. Auban, “The panda tests 9 and 9bis investigating gas mixing and stratification triggered by low momentum plumes,” Nuclear Engineering and Design, vol. 240, no. 5, pp. 1262–1270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Paladino, R. Zboray, M. Andreani, and J. Dreier, “Flow transport and mixing induced by horizontal jets impinging on a vertical wall of the multi-compartment PANDA facility,” Nuclear Engineering and Design, vol. 240, no. 8, pp. 2054–2065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Zboray and D. Paladino, “Experiments on basic thermalhydraulic phenomena relevant for LWR containments: gas mixing and transport induced by buoyant jets in a multi-compartment geometry,” Nuclear Engineering and Design, vol. 240, no. 10, pp. 3158–3169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Paladino, M. Huggenberger, M. Andreani et al., “LWR containment safety research in PANDA,” in Proceedings of the International Conference on Advances in Nuclear Power Plants (ICAPP '08), pp. 1853–1861, Anaheim, Calif, USA, June 2008.
  11. ERCOSAM: containment Thermal-hydraulics of current and future LWRs for severe accident management, SP5-Euratom, Collaborative Project, Small or medium-scale focused research project, FP7-Fission-2009, Grant Agreement No 249691, 2010.
  12. B. S. Shiralkar, M. D. Alamgir, and J. G. M. Andersen, “Thermal hydraulic aspects of the SBWR design,” Nuclear Engineering and Design, vol. 144, no. 2, pp. 213–222, 1993. View at Google Scholar
  13. G. Yadigaroglu, “Derivation of general scaling criteria for BWR containment tests,” in Proceedings of the 4th International Conference on Nuclear Engineering (ICONE '96), pp. 547–558, New Orleans, La, USA, March 1996.
  14. G. Yadigaroglu, J. Dreier, and M. Huggenberger, “The PANDA tests for the SBWR,” in Proceedings of the 25th Water Reactor Safety Information Meeting, Bethesda, Md, USA, October 1997.
  15. T. Bandurski, M. Huggenberger, J. Dreier et al., “Influence of the distribution of noncondensibles on passive containment condenser performance in PANDA,” Nuclear Engineering and Design, vol. 204, no. 1–3, pp. 285–298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. H. W. Schenck and A. M. Hoft van Huysduynen, “Scaling analysis of passive containment cooling tests,” INNO-TEPSS (96)-DO04. ECN, Petten, Nederland, 1997.
  17. D. Paladino, O. Auban, M. Huggenberger, and J. Dreier, “A PANDA integral test on the effect of light gas on a Passive Containment Cooling System (PCCS),” Nuclear Engineering and Design, vol. 241, no. 11, pp. 4551–4561, 2011. View at Publisher · View at Google Scholar
  18. G. Mignot, R. Kapulla, N. Erkan, R. Zboray, and D. Paladino, “Containment cooler performance in the presence of light non condensable gas with cooler location as a primary parameter,” in Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Toronto, Canada, September 2011.
  19. N. Erkan, R. Kapulla, G. Mignot, R. Zboray, and D. Paladino, “Experimental investigation of spray induced gas stratification break-up and mixing in two interconnected vessels,” Nuclear Engineering and Design, vol. 241, no. 9, pp. 3935–3944, 2011. View at Publisher · View at Google Scholar
  20. D. Paladino, G. Mignot, N. Erkan, R. Zboray, R. Kapulla, and M. Andreani, “Sudden discharge of gas mixture in a confined multi-compartment,” in Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH '10), Toronto, Canada, September 2011.
  21. R. P. Martin, C. A. Bonilla, and E. S. Williams, “Combustible gas control system evaluation for the U.S. EPR,” in Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '09), Kanazawa city, Ishikawa Prefecture, Japan, September 2009.
  22. CSNI, Summary record of the Forty-ninth CSNI Meeting, NEA/SEN/SIN(2011)2, Paris, France, June 2011.
  23. R. Kapulla, D. Paladino, G. Mignot, R. Zboray, and S. Gupta, “Break-up of gas stratified in LWR containment induced by negatively buoyant jets and plumes,” in Proceedings of the International Conference in Nuclear Engineering (ICONE '09), Brussels, Belgium, July 2009.
  24. G. Mignot, D. Paladino, R. Kapulla, and R. Zboray, “Overview of vertical fluid release series,” in Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '09), Kanazawa City, Ishikawa Prefecture, Japan, September 2009.
  25. R. Zboray, D. Paladino, G. Mignot, and R. Kapulla, “Mixing of density stratified containment atmosphere by horizontal jet release,” in Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, September 2009.