Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 767096, 9 pages
http://dx.doi.org/10.1155/2012/767096
Research Article

A Two-Step Approach to Uncertainty Quantification of Core Simulators

1Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
2Reactor Safety Research Division, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Boltzmannstraße 14, 85748 Garching bei München, Germany
3Reactor and Nuclear Systems Division, Oak Ridge National Laboratory, P.O. Box 2008 MS6172, Oak Ridge, TN 37831, USA

Received 30 July 2012; Accepted 7 December 2012

Academic Editor: Kostadin Ivanov

Copyright © 2012 Artem Yankov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Ivanov, M. Avramova, I. Kodeli, and E. Sartori, Benchmark for Uncertainty Analysis in Modeling (UAM) for Design, Operation and Safety Analysis of LWRs, Rep. NEA/NSC/DOC(2007)23, Nuclear Energy Agency, 2nd edition, 2007.
  2. M. Klein, L. Gallner, B. Krzykacz-Hausmann, A. Pautz, and W. Zwermann, “Influence of nuclear data uncertainties on reactor core calculations,” Kerntechnik, vol. 76, no. 3, pp. 174–178, 2011. View at Google Scholar · View at Scopus
  3. B. Krzykacz, E. Hofer, and M. Kloos, “A software system for probabilistic uncertainty and sensitivity analysis of results from computer models,” in Proceedings of the International Conference on Probabilistic Safety Assessment and Management (PSAM '94), San Diego, Calif, USA, 1994.
  4. M. Williams, M. A. Jessee, R. Ellis, and B. Rearden, “Sensitivity and uncertainty analysis for OECD UAM benchmark of peach bottom BWR,” in Proceedings of the 4th Uncertainty Analysis in Modelling Benchmark Meeting, Pisa, Italy, April 2010.
  5. A. Yankov, M. Klein, M. A. Jessee et al., “Comparison of XSUSA and “two-step” approaches for full-core uncertainty quantification,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '12), Knoxville, Tenn, USA, April 2012.
  6. K. Ivanov, T. M. Beam, A. J. Baratta, A. Irani, and N. Trikouros, “Pressurised water reactor Main Steam Line Break (MSLB) benchmark,” Tech. Rep. NEA/NSC/DOC(99)8, Nuclear Energy Agency, 1999. View at Google Scholar
  7. SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39, Version 6. 1, Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-785, Oak Ridge, Tenn, USA, 2011.
  8. P. R. Bevington and K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Boston, Mass, USA, 2003.
  9. M. Williams, D. Wiarda, H. Smith et al., “Development of a statistical sampling method for uncertainty analysis with scale,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '12), Knoxville, Tenn, USA, April 2012.
  10. M. A. Jessee, M. L. Williams, and M. D. DeHart, “Development of generalized perturbation theory capability within the scale code package,” in Proceedings of the International Conference on Mathematics, Computational Methods, and Reactor Physics (M&C '09), Saratoga Springs, New York, NY, USA, May 2009.
  11. T. Downar, Y. Xu, and V. Seker, “PARCSv3. 0 Theory Manual,” UM-NERS-09-001, October 2009.
  12. S. Langenbuch and K. Velkov, “Overview on the development and application of the coupled code system ATHLET—QUABBOX/CUBBOX,” in Proceedings of the Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Avignon, France, September 2005.
  13. M. Williams, “Perturbation theory for nuclear reactor analysis,” in CRC Handbook of Nuclear Reactor Calculations, vol. 3, pp. 63–188, 1986. View at Google Scholar
  14. M. A. Jessee, Cross section adjustment techniques for BWR adaptive simulation [Dissertation], North Carolina State University, Raleigh, NC, USA, 2008.
  15. A. Yankov, B. Collins, M. A. Jessee, and T. Downar, “A generalized adjoint approach for quantifying reflector assembly discontinuity factor uncertainties,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '12), Knoxville, Tenn, USA, April 2012.
  16. M. L. Williams, G. Ilas, M. A. Jessee et al., “A statistical sampling method for uncertainty analysis with SCALE and XSUSA,” submitted to Nuclear Technology.
  17. R. Fisher, “On the ‘probable error’ of a coefficient of correlation deduced from a small sample,” Metron, vol. 1, pp. 3–32, 1921. View at Google Scholar
  18. M. Klein, L. Gallner, B. Krzykacz-Hausmann, A. Pautz, K. Velkov, and W. Zwermann, “Interaction of loading pattern and nuclear data uncertainties in reactor core calculations,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '12), Knoxville, Tenn, USA, April 2012.
  19. I. Pasichnyk, M. Klein, K. Velkov, W. Zwermann, and A. Pautz, “Nuclear data uncertainties by the PWR MOX/UO2 core rod ejection benchmark,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '12), Knoxville, Tenn, USA, April 2012.