Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012 (2012), Article ID 951923, 9 pages
Research Article

Depressurization of Vertical Pipe with Temperature Gradient Modeled with WAHA Code

Reactor Engineering Division, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia

Received 14 June 2012; Accepted 27 August 2012

Academic Editor: Eckhard Krepper

Copyright © 2012 Oriol Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The subcooled decompression under temperature gradient experiment performed by Takeda and Toda in 1979 has been reproduced using the in-house code WAHA version 3. The sudden blowdown of a pressurized water pipe under temperature gradient generates a travelling pressure wave that changes from decompression to compression, and vice versa, every time it reaches the two-phase region near the orifice break. The pressure wave amplitude and frequency are obtained at different locations of the pipe's length. The value of the wave period during the first 20 ms of the experiment seems to be correct but the pressure amplitude is overpredicted. The main three parameters that contribute to the pressure wave behavior are: the break orifice (critical flow model), the ambient pressure at the outlet, and the number of volumes used for the calculation. Recent studies using RELAP5 code have reproduced the early pressure wave (transient) of the same experiment reducing the discharge coefficient and the bubble diameter. In the present paper, the long-term pipe pressure, that is, 2 seconds after rupture, is used to estimate the break orifice that originates the pressure wave. The numerical stability of the WAHA code is clearly proven with the results using different Courant numbers.