Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 951923, 9 pages
http://dx.doi.org/10.1155/2012/951923
Research Article

Depressurization of Vertical Pipe with Temperature Gradient Modeled with WAHA Code

Reactor Engineering Division, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia

Received 14 June 2012; Accepted 27 August 2012

Academic Editor: Eckhard Krepper

Copyright © 2012 Oriol Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Bergant, J. M. C. Westende, T. van't Koppel et al., “Water hammer and column separation due to accidental simultaneous closure of control valves in a large scale two-phase flow experimental test rig,” Proceedings of the ASME Pressure Vessels & Piping Division/K-PVP Conference, Bellevue, Wash, USA, July 2010.
  2. P. Hermansky and M. Krajčovič, “The dynamical loading of the WWER440V213 reactor pressure vessel internals during LOCA accident in hot and cold leg of the primary circuit,” in Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, September 2010.
  3. “RELAP5/MOD3 Code Manual,” vol. 1–7, The RELAP5 Code Development team, NUREG/CR-5535, EG&G, Idaho Falls, Idaho, USA, 1995.
  4. A. R. Edwards and T. P. O'Brien, “Studies of phenomena connected with the depressurization of water reactors,” Journal of the British Nuclear Energy Society, vol. 9, no. 2, pp. 125–135, 1970. View at Google Scholar · View at Scopus
  5. Y. Takeda and S. Toda, “Pressure oscillation in subcooled decompression under temperature gradient,” Journal of Nuclear Science and Technology, vol. 16, no. 7, pp. 484–495, 1979. View at Google Scholar · View at Scopus
  6. N. Lafferty, V. Ransom, and M. L. de Bertodano, “RELAP5 analysis of two-phase decompression and rarefaction wave propagation under a temperature gradient,” Nuclear Technology, vol. 169, no. 1, pp. 34–49, 2010. View at Google Scholar · View at Scopus
  7. B. Končar and M. Borut, “Wall function approach for boiling two-phase flows,” Nuclear Engineering and Design, vol. 240, no. 11, pp. 3910–3918, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. “WAHA3 Code Manual,” IJS-DP-8841, Institute Jožef Stefan, Ljubljana, Slovenija, 2004.
  9. E. B. Wylie and V. L. Streeter, Fluid Transients, 1978.
  10. I. Kljenak and B. Mavko, “Simulation of void fraction profile evolution in subcooled nucleate boiling flow in a vertical annulus using a bubble-tracking approach,” Heat and Mass Transfer, vol. 42, no. 6, pp. 552–561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH, Zurich, Switzerland, 1992.
  12. “B36. 10 welded and seamless wrought steel pipe and B36. 19 stainless steel pipe,” ASME/ANSI Standards.