Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 127676, 10 pages
http://dx.doi.org/10.1155/2013/127676
Research Article

Modeling Forced Flow Chemical Vapor Infiltration Fabrication of SiC-SiC Composites for Advanced Nuclear Reactors

General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA

Received 21 November 2012; Accepted 5 February 2013

Academic Editor: Hangbok Choi

Copyright © 2013 Christian P. Deck et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. L. Snead, T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo, and D. A. Petti, “Handbook of SiC properties for fuel performance modeling,” Journal of Nuclear Materials, vol. 371, no. 1–3, pp. 329–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Katoh, T. Nozawa, L. L. Snead, K. Ozawa, and H. Tanigawa, “Stability of SiC and its composites at high neutron fluence,” Journal of Nuclear Materials, vol. 417, no. 1–3, pp. 400–405, 2011. View at Publisher · View at Google Scholar
  3. K. Hironaka, T. Nozawa, T. Hinoki et al., “High-temperature tensile strength of near-stoichiometric SiC/SiC composites,” Journal of Nuclear Materials, vol. 307–311, no. 2, pp. 1093–1097, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Kotani, A. Kohyama, and Y. Katoh, “Development of SiC/SiC composites by PIP in combination with RS,” Journal of Nuclear Materials, vol. 289, no. 1-2, pp. 37–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Naslain, “Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview,” Composites Science and Technology, vol. 64, no. 2, pp. 155–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Shimoda, J. S. Park, T. Hinoki, and A. Kohyama, “Microstructural optimization of high-temperature SiC/SiC composites by NITE process,” Journal of Nuclear Materials, vol. 386–388, pp. 634–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. W. G. Zhang and K. J. Hüttinger, “CVD of SiC from methyltrichlorosilane—part II: composition of the gas phase and the deposit,” Chemical Vapor Deposition, vol. 7, no. 4, pp. 173–181, 2001. View at Google Scholar
  8. G. Y. Chung and B. J. McCoy, “Modeling of chemical vapor infiltration for ceramic composites reinforced with layered, woven fabrics,” Journal of the American Ceramic Society, vol. 74, no. 4, pp. 746–751, 1991. View at Publisher · View at Google Scholar
  9. X. Wei, L. Cheng, L. Zhang, Y. Xu, and Q. Zeng, “Numerical simulation of effect of methyltrichlorosilane flux on isothermal chemical vapor infiltration process of C/SiC composites,” Journal of the American Ceramic Society, vol. 89, no. 9, pp. 2762–2768, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. P. Deck, H. E. Khalifa, B. Sammuli, T. Hilsabeck, and C. A. Back, “Fabrication of SiC-SiC composites for fuel cladding in advanced reactor designs,” Progress in Nuclear Energy, vol. 57, pp. 38–45, 2012. View at Publisher · View at Google Scholar
  11. T. M. Besmann, B. W. Sheldon, T. S. Moss III, and M. D. Kaster, “Depletion effects of silicon carbide deposition from methyltrichlorosilane,” Journal of the American Ceramic Society, vol. 75, no. 10, pp. 2899–2903, 1992. View at Publisher · View at Google Scholar
  12. C. Lu, L. Cheng, C. Zhao, L. Zhang, and Y. Xu, “Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen,” Applied Surface Science, vol. 255, no. 17, pp. 7495–7499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. T. Schulberg, M. D. Allendorf, and D. A. Outka, “The adsorption of hydrogen chloride on polycrystalline β-silicon carbide,” Surface Science, vol. 341, no. 3, pp. 262–272, 1995. View at Google Scholar · View at Scopus
  14. H. C. Chang, T. F. Morse, and B. W. Sheldon, “Minimizing infiltration times during isothermal chemical vapor infiltration with methyltrichlorosilane,” Journal of the American Ceramic Society, vol. 80, no. 7, pp. 1805–1811, 1997. View at Google Scholar · View at Scopus
  15. Y. G. Roman, J. F. A. K. Kotte, and M. H. J. M. de Croon, “Analysis of the isothermal forced flow chemical vapour infiltration process—part I: theoretical aspects,” Journal of the European Ceramic Society, vol. 15, pp. 875–886, 1995. View at Google Scholar
  16. Y. G. Roman, M. H. J. M. de Croon, and R. Metselaar, “Analysis of the isothermal forced flow chemical vapour infiltration process—part II: experimental study,” Journal of the European Ceramic Society, vol. 15, no. 9, pp. 887–898, 1995. View at Google Scholar · View at Scopus