Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013, Article ID 261327, 6 pages
http://dx.doi.org/10.1155/2013/261327
Research Article

Solution of Point Reactor Neutron Kinetics Equations with Temperature Feedback by Singularly Perturbed Method

Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Faculty 301, Wuhan 430033, China

Received 30 May 2013; Revised 27 August 2013; Accepted 29 August 2013

Academic Editor: Arkady Serikov

Copyright © 2013 Wenzhen Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. P. Gupta and M. S. Trasi, “Asymptotically stable solutions of point-reactor kinetics equations in the presence of Newtonian temperature feedback,” Annals of Nuclear Energy, vol. 13, no. 4, pp. 203–207, 1986. View at Google Scholar · View at Scopus
  2. H. Van Dam, “Dynamics of passive reactor shutdown,” Progress in Nuclear Energy, vol. 30, no. 3, pp. 255–264, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, La Grange Park, Ill, USA, 1993.
  4. W. M. Stacey, Nuclear Reactors Physics, Wiley-Interscience, New York, NY, USA, 2001.
  5. A. A. Nahla and E. M. E. Zayed, “Solution of the nonlinear point nuclear reactor kinetics equations,” Progress in Nuclear Energy, vol. 52, no. 8, pp. 743–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Espinosa-Paredes, M.-A. Polo-Labarrios, E.-G. Espinosa-Martínez, and E. D. Valle-Gallegos, “Fractional neutron point kinetics equations for nuclear reactor dynamics,” Annals of Nuclear Energy, vol. 38, no. 2-3, pp. 307–330, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. E. Aboanber and A. A. Nahla, “Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximations via the analytical inversion method,” Journal of Physics A, vol. 35, no. 45, pp. 9609–9627, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. E. Aboanber and Y. M. Hamada, “Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback,” Annals of Nuclear Energy, vol. 30, no. 10, pp. 1111–1122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Z. Chen, B. Zhu, and H. F. Li, “The analytical solution of point-reactor neutron-kinetics equation with small step reactivity,” Acta Physica Sinica, vol. 50, no. 8, pp. 2486–2489, 2004 (Chinese). View at Google Scholar
  10. H. Li, W. Chen, F. Zhang, and L. Luo, “Approximate solutions of point kinetics equations with one delayed neutron group and temperature feedback during delayed supercritical process,” Annals of Nuclear Energy, vol. 34, no. 6, pp. 521–526, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Sathiyasheela, “Power series solution method for solving point kinetics equations with lumped model temperature and feedback,” Annals of Nuclear Energy, vol. 36, no. 2, pp. 246–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. M. Hamada, “Confirmation of accuracy of generalized power series method for the solution of point kinetics equations with feedback,” Annals of Nuclear Energy, vol. 55, pp. 184–193, 2013. View at Google Scholar
  13. Q. Zhu, X.-L. Shang, and W.-Z. Chen, “Homotopy analysis solution of point reactor kinetics equations with six-group delayed neutrons,” Acta Physica Sinica, vol. 61, no. 7, Article ID 070201, 2012. View at Google Scholar · View at Scopus
  14. S. D. Hamieh and M. Saidinezhad, “Analytical solution of the point reactor kinetics equations with temperature feedback,” Annals of Nuclear Energy, vol. 42, pp. 148–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. A. Nahla, “An analytical solution for the point reactor kinetics equations with one group of delayed neutrons and the adiabatic feedback model,” Progress in Nuclear Energy, vol. 51, no. 1, pp. 124–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Chen, L. Guo, B. Zhu, and H. Li, “Accuracy of analytical methods for obtaining supercritical transients with temperature feedback,” Progress in Nuclear Energy, vol. 49, no. 4, pp. 290–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Li, W. Chen, L. Luo, and Q. Zhu, “A new integral method for solving the point reactor neutron kinetics equations,” Annals of Nuclear Energy, vol. 36, no. 4, pp. 427–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Q. Huang, Kinetics Base of Nuclear Reactor, Peking University Press, Beijing, China, 2007 (Chinese).