Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 610598, 11 pages
Research Article

Uncertainty and Sensitivity Studies with TRACE-SUSA and TRACE-DAKOTA by Means of Steady State BFBT Data

1Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 76344 Eggenstein-Leopoldshafen, Germany
2Universidad Politecnica de Madrid, Departamento de Sistemas Energeticos ETSI Minas, Alenza 4, 28003 Madrid, Spain

Received 16 October 2012; Accepted 8 February 2013

Academic Editor: Borut Mavko

Copyright © 2013 Wadim Jaeger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The subject of the present paper is the uncertainty and sensitivity studies for steady state BFBT results including pressure drop and void fraction measurements. The investigations are performed with TRACE (version 5.0 patch 2), thermal hydraulic modeling, and SUSA and DAKOTA; both tools are for the evaluation of uncertainties and sensitivities. For this purpose, the NUPEC BFBT experimental data base is used. The advantage of applying two different uncertainty and sensitivity tools in combination with TRACE is that the user effect can be excluded. Since in both cases the TRACE model of the BFBT bundle is identical the differences in the results are related to the capabilities of the uncertainty and sensitivity tools. The reference results with TRACE show that the code is very well able to represent both single- and two-phase flows even though it is a 1D coarse mesh system code. For selected cases, an uncertainty study was performed. Even though a reduced number of uncertain parameters are considered in the DAKOTA investigation, compared to the one with SUSA, similar results are obtained. The results indicate also that even small parameter variations can yield to rather large variations of the selected output parameters.