Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 945858, 8 pages
http://dx.doi.org/10.1155/2013/945858
Research Article

Projected Salt Waste Production from a Commercial Pyroprocessing Facility

Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA

Received 20 February 2013; Accepted 24 April 2013

Academic Editor: Candido Pereira

Copyright © 2013 Michael F. Simpson. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. C. Song, H. Lee, J. M. Hur, J. G. Kim, D. H. Ahn, and Y. Z. Cho, “Status of pyroprocessing technology development in Korea,” Nuclear Engineering and Technology, vol. 42, no. 2, pp. 131–144, 2010. View at Google Scholar · View at Scopus
  2. J. P. Ackerman, T. R. Johnson, L. S. H. Chow, E. L. Carls, W. H. Hannum, and J. J. Laidler, “Treatment of wastes in the ifr fuel cycle,” Progress in Nuclear Energy, vol. 31, no. 1-2, pp. 141–154, 1997. View at Google Scholar · View at Scopus
  3. L. J. Simpson and D. J. Wronkiewicz, “Evaluation of standard durability tests towards the qualification process for the glass-zeolite ceramic waste form,” in Proceedings of the 20th Scientific Basis for Nuclear Waste Management, W. Gray and K. Knecht, Eds., vol. 465, pp. 441–448, Materials Research Society, 1997.
  4. C. Pereira, “Production of sodalite waste forms by addition of glass,” Ceramic Transactions, vol. 61, p. 389, 1997. View at Google Scholar
  5. S. Priebe and K. Bateman, “The ceramic waste form process at Idaho National Laboratory,” Nuclear Technology, vol. 162, no. 2, pp. 199–207, 2008. View at Google Scholar · View at Scopus
  6. M. F. Simpson, K. M. Goff, S. G. Johnson et al., “A description of the ceramic waste form production process from the demonstration phase of the electrometallurgical treatment of EBR-II spent fuel,” Nuclear Technology, vol. 134, no. 3, pp. 263–277, 2001. View at Google Scholar · View at Scopus
  7. E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow, and L. Redey, “Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes,” Nuclear Technology, vol. 136, no. 3, pp. 342–353, 2001. View at Google Scholar · View at Scopus
  8. S. D. Herrmann, S. X. Li, M. F. Simpson, and S. Phongikaroon, “Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products,” Separation Science and Technology, vol. 41, no. 10, pp. 1965–1983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. X. Li, S. D. Herrmann, and M. F. Simpson, “Electrochemical analysis of actinides and rare earth constituents in liquid cadmium cathode product from spent fuel electrorefining,” Nuclear Technology, vol. 171, no. 3, pp. 292–299, 2010. View at Google Scholar · View at Scopus
  10. S. X. Li, S. D. Herrmann, K. M. Goff, M. F. Simpson, and R. W. Benedict, “Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt,” Nuclear Technology, vol. 165, no. 2, pp. 190–199, 2009. View at Google Scholar · View at Scopus
  11. M. F. Simpson, T. S. Yoo, D. LaBrier, M. Lineberry, M. Shaltry, and S. Phongikaroon, “Selective reduction of active metal chlorides from molten LiCl-KCl using lithium drawdown,” Nuclear Engineering and Technology, vol. 44, no. 7, pp. 767–772, 2012. View at Publisher · View at Google Scholar
  12. C. Pereira, M. C. Hash, M. A. Lewis, M. K. Richmann, and J. Basco, “Incorporation of radionuclides from the electrometallurgical treatment of spent fuel into a ceramic waste form,” Materials Research Society Symposium Proceedings, vol. 556, p. 115, 1999. View at Publisher · View at Google Scholar
  13. Y. Z. Cho, H. C. Yang, H. C. Eun, E. H. Kim, and I. T. Kim, “Characteristics of oxidation reaction of rare-earth chlorides for precipitation in LiCl-KCl molten salt by oxygen sparging,” Journal of Nuclear Science and Technology, vol. 43, no. 10, pp. 1280–1286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. A. Volkovich, T. R. Griffiths, and R. C. Thied, “Treatment of molten salt wastes by phosphate precipitation: removal of fission product elements after pyrochemical reprocessing of spent nuclear fuels in chloride melts,” Journal of Nuclear Materials, vol. 323, no. 1, pp. 49–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Z. Cho, G. H. O. Park, H. S. U. Lee, I. N. T. Kim, and D. S. Han, “Concentration of cesium and strontium elements involved in a LiCl waste salt by a melt crystallization process,” Nuclear Technology, vol. 171, no. 3, pp. 325–334, 2010. View at Google Scholar · View at Scopus
  16. B. J. Riley, B. T. Rieck, J. S. McCloy, J. V. Crum, S. K. Sundaram, and J. D. Vienna, “Tellurite glass as a waste form for mixed alkali-chloride waste streams: candidate materials selection and initial testing,” Journal of Nuclear Materials, vol. 242, no. 1–3, pp. 29–37, 2012. View at Google Scholar
  17. Y. Wang, M. Simpson, J. Rath et al., “Closing the nuclear fuel cycle with salt,” in Proceedings of the 13th International High-Level Radioactive Waste Management Conference, Albuquerque, NM, USA, 2011.