Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2015, Article ID 237646, 9 pages
Research Article

Methods and Models for the Coupled Neutronics and Thermal-Hydraulics Analysis of the CROCUS Reactor at EFPL

1École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
2Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland

Received 6 March 2015; Accepted 30 May 2015

Academic Editor: Rafael Miró

Copyright © 2015 A. Rais et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hainoun, “Towards standard methodology in the safety analysis of research reactors,” in Proceedings of the International Conference on Research Reactors: Safe Management and Effective Utilization, Rabat, Morocco, 2011.
  2. IAEA, “Safety reassessment for research reactors in the light of the accident at the Fukushima Daiichi nuclear power plant,” Reports Series 80, IAEA, 2014. View at Google Scholar
  3. R. Früh, Réacteur CROCUS, Complément au rapport de sécurité: Réactivité et paramètres cinétiques, Lausanne, 1993.
  4. H. G. Joo, J. Y. Cho, K. S. Kim, C. C. Lee, and S. Q. Zee, Methods and Performance of a Three-Dimensional Whole-CoreTransport Code DeCART, American Nuclear Society, 2004.
  5. Y. S. Jung, nTRACER v1.0 Methodology Manual, SNURPL-CM-001 (10), Seoul National University Reactor Physics Laboratory, Seoul, Republic of Korea, 2010.
  6. B. Kochunas, B. Collins, D. Jabaay, T. Downar, and W. Martin, Overview of Development and Design of MPACT: Michigan Parallel Characteristics Transport Code, American Nuclear Society, La Grange Park, Ill, USA, 2013.
  7. D. Knott and A. Yamamoto, “Lattice physics computations,” in Handbook of Nuclear Engineering, pp. 913–1239, Springer, New York, NY, USA, 2010. View at Publisher · View at Google Scholar
  8. E. Fridman and J. Leppänen, “On the use of the Serpent Monte Carlo code for few-group cross section generation,” Annals of Nuclear Energy, vol. 38, no. 6, pp. 1399–1405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Leppänen, Development of a New Monte Carlo Reactor Physics Code, VTT Technical Research Centre of Finland, 2007.
  10. M. Hursin, A. Vasiliev, H. Ferroukhi, and A. Pautz, Comparison of SERPENT and CASMO-5M for Pressurized Water Reactors Models, American Nuclear Society, La Grange Park, Ill, USA, 2013.
  11. E. Nikitin, E. Fridman, and K. Mikityuk, “Solution of the OECD/NEA neutronic SFR benchmark with Serpent-DYN3D and Serpent-PARCS code systems,” Annals of Nuclear Energy, vol. 75, pp. 492–497, 2015. View at Publisher · View at Google Scholar
  12. D. J. Siefman, G. Girardin, A. Rais, A. Pautz, and M. Hursin, “Full Core modeling techniques for research reactors with irregular geometries using Serpent and PARCS applied to the CROCUS reactor,” Annals of Nuclear Energy, 2015. View at Publisher · View at Google Scholar
  13. B. R. Herman, Cross section generation strategy for high conversion light water reactors [Master thesis], Massachusetts Institute of Technology, 2011.
  14. E. Fridman, J. Leppänen, and C. Wemple, “An updated approach for calculation of diffusion coefficient,” in Proceedings of the Serpent International Users Group Meeting, 2013.
  15. R. J. J. Stamm'ler and M. J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, vol. 111, Academic Press, London, UK, 1983.
  16. M. Edenius, K. Ekberg, B. H. Forssen, and D. Knott, “CASMO-4, a fuel assembly burnup program, user's manual,” Studsvik Report SOA-95/1, Studsvik of America, 1995. View at Google Scholar
  17. R. Stammler, J. Casal, A. Ferri, and E. Villarino, User's Manual for HELIOS, Studsvik Scandpower, Waltham, Mass, USA, 1994.
  18. J. A. Bucholz, SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, No. NUREG/CR-0200-Vol. 2-Bk. 2; ORNL/NUREG/CSD-2-Vol. 2-Bk. 2, Oak Ridge National Lab, Oak Ridge, Tenn, USA, 1982.
  19. M. Hursin, D. Siefman, A. Rais, G. Girardin, and A. Pautz, “Verification of a reactor physics calculation scheme for the crocus reactor,” in ITMSR-3: 3rd International Technical Meeting on Small Reactors, 5-7 Nov 2014, Ottawa, Canada, vol. 1, p. 1, 2014. View at Google Scholar
  20. T. Downar, Y. Xu, and T. Kozlowski, PARCS v2. 7 US NRC Core Neutronics Simulator User Manual, Purdue University, West Lafayette, Ind, USA, 2006.
  21. V. H. Ransom, J. Trapp, and R. Wagner, RELAP5/MOD3.3 Code Manual Volume IV: Models and Correlations, NUREG/CR-5535/Rev 1, Idaho National Engineering Laboratory, 2001.
  22. L. Cheng, A. Diamond, D. Xu, J. Carew, and J. Rorer, “Physics and safety analysis for the NIST research reactor,” Tech. Rep. BNL-NIST-0803, Brookhaven National Laboratory, 2004, Rev. 1. View at Google Scholar
  23. A. L. Costa, P. A. L. Reis, C. Pereira, M. A. F. Veloso, A. Z. Mesquita, and H. V. Soares, “Thermal hydraulic analysis of the IPR-R1 TRIGA research reactor using a RELAP5 model,” Nuclear Engineering and Design, vol. 240, no. 6, pp. 1487–1494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. F. Slootman, M. M. Stempniewicz, and H. T. Wiersema, “Methodology of the Safety Analyses for the HFR Petten,”
  25. C. F. Obenchain, “PARET: a program for the analysis of reactor transients,” Tech. Rep. IDO-17282, Atomic Energy Division, Phillips Petroleum Company, Idaho Falls, Idaho, USA, 1969. View at Google Scholar
  26. S. E. Day, M. P. Butler, and W. J. Garland, “Calculations in support of the MNR core conversion,” in Proceedings of the 24th International Meeting on Reduced Enrichment for Research and Test Reactors, McMaster Nuclear Reactor, McMaster University, San Carlos de Bariloche, Argentina, November 2002.
  27. K. Jordan, D. Siefman, and D. Cronin, “A fully-reconstituted safety basis for the University of Florida training reactor,” in Proceedings of the Joint IGORR and IAEA Technology Meeting, 2013.
  28. A. Hammoud, B. Meftah, M. Azzoune, L. Radji, B. Zouhire, and M. Amina, “Thermal-hydraulic behavior of the NUR nuclear research reactor during a fast loss of flow transient,” Journal of Nuclear Science and Technology, vol. 51, no. 9, pp. 1154–1160, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. L. W. Hu, J. A. Bernard, and M. J. McGuire, “Development and benchmarking of a thermal-hydraulics code for the MIT nuclear research reactor,” in Proceedings of the Saratoga: Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, vol. 1, American Nuclear Society, 1997.
  30. W. L. Woodruff, J. R. Deen, and C. Papastergiou, Transient Analyses and Thermal-Hydraulic Safety Margins for the Greek Research Reactor (GRRI), Argonne National Laboratory, Lemont, Ill, USA; Funding Organisation: USDOE, Washington, DC, USA, 1995.
  31. R. Früh, Réacteur CROCUS, Accident Hypothetique Maximum, Lausanne, 1991.
  32. J. M. Paratte, P. Grimm, and J. M. Hollard, ELCOS: The PSI Code System for LWR Core Analysis. Part II: User's Manual for the Fuel Assembly Code BOXER, Paul Scherrer Institute, Villigen, Switzerland, 1996.
  33. U. S. NRC, TRACE V5.0 Theory Manual—Field Equations, Solution Methods and Physical Models, 2007.
  34. A. L. Costa, P. A. L. Reis, C. A. M. Silva et al., “Safety studies and general simulations of research reactors using nuclear codes,” in Nuclear Power—System Simulations and Operation, chapter 2, InTech, Rijeka, Croatia, 2011. View at Publisher · View at Google Scholar
  35. A. Hebert, “A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly,” Nuclear Science and Engineering, vol. 113, no. 3, pp. 227–238, 1993. View at Publisher · View at Google Scholar · View at Scopus